

Today I will show you how you can easily develop an app for an Android device,
mobile phone or tablet with the help of graphic elements, for example to control the
robot car. Welcome to the new episode of

Micropython on the Robot Car

Part 3 - Controlling the car by a mobile phone

The mobile phone recognizes the position in the room and automatically changes the
screen display, for example, depending on the orientation of the device. Behind this
is a relative of the MPU6050 chip, which is built into the GY521 module that we used
in our hand control in the first episode. Maybe you tried this feature together with your
Robot Car in the second episode, what am I talking about, of course you have
already done that. Well, whatever works with the hand control you can do with your
cell phone after following the steps in this description. Don't worry, it won't be
complicated. If you loved to play with building blocks when you were young, you can
easily master it.

Obtaining and installing the software

The hardware is basically complete, unless you want to give your car two LEDs for
the taillights. What you need now and here are therefore only two things, the robot
car and your Android smartphone. Well, then there's the software. There are three
ways to use the free software from MIT (Massachusetts Institute of Technology),
which is also a licensee. Two of them lead through software parts that have to be
installed on the PC. I chose the third option, which is also highly recommended by
the makers of App Inventor 2 (AI2). Only a browser is used on the PC and the MIT
AI2 Companion app on the mobile phone. A browser like Firefox or Chrome does it
on the PC. It definitely doesn't work with Internet Explorer, but it's dead anyway. I
haven't tested whether Edge can be used, what for? You can install the MIT AI2
Companion via the Google Playstore. For this procedure to work correctly, the mobile
phone must be logged into a local radio network, not via the Internet. Access via the
Internet cannot work because any number of destinations can be reached from the
cell phone, but conversely, the cell phone cannot be addressed directly from the
Internet. It is encapsulated in the provider's local network and is therefore not visible
from the outside. This means that the browser cannot access the mobile phone from
the Internet because there is no public IP and no routing.

The basic tool is now ready. However, there is a small handicap: the cell phone can
use the TCP dialect perfectly, but at first doesn't understand a word UDP. This is also
not necessary for the standard applications. So we give him a little language course
via AI2. I found it on Ulli's robot site. Here is the download address:

https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip

First unzip the archive into a directory of your choice. Go there and make sure that
the file de.ullisroboterseite.ursai2udp.aix is listed. It contains the extensions that we
will shortly need to create our tax app.

Starting App Inventor 2 for the very first time
Now open Chrome or Firefox, if no browser is running yet, and enter the following
URL.

http://ai2.appinventor.mit.edu

You can only register with Appinventor with a Google account. If you already have
one, click on Next, otherwise on Create account.

https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip
http://ai2.appinventor.mit.edu/

The account can also be created with fake data. This applies to the first and also to
the following page.

After the usual settings for privacy you will land on this page.

The MIT APP INVENTOR link takes you back to the login. Log in with your Google
account and don't be seduced by the huge range of tutorials and examples, just start

a new, empty project, you want to control the Robot Car with your own app, right? Of
course you do!

But I also know that later on you will eagerly soak up everything that AI2 has to offer
you - at least that's how I felt.

Setup of the screen objects
Let's take a look at the page on which the layout of the app is being designed. In the
Palette section you will find the ingredients. The middle area, Viewer, is your
workspace. To the right of this in the Components section, the hierarchy of the
components used is shown and to the right, in Properties, the properties of the currently
selected component. You can see all of this if you have selected Designer in the green
line above these areas on the far right.

We are now going to add piece by piece to the layout and set the properties of the
components. All properties that are not explicitly listed remain on the default setting.

The screen component is already activated. We give it the title ROBOTCAR
CONTROL. Scroll down in Properties and enter the text under Title.

A switch and a text window should appear in the first line. So get a switch and a label
from the User Interface folder and drag them onto the surface of the phone. What,
the label doesn't want to live next to the switch. Give both of them a tidy home, get a
horizontal arrangement from the Layout folder and set it using the switch. Now you
can put the Switch1 and Label1 elements in them and look, now they also sit
peacefully next to each other.

Let's distribute the properties. Select the HorizontalArrangement1 entry in
Components. Click the box of Width, Fill Parent and OK.

In Components, select Switch1. Left click on Rename, then enter the new name
MainSwitch. Change the properties as follows.

Benennen Sie Label1 in MyIP um und stellen Sie die Eigenschaften auf folgende
Werte ein.

Insert another label with the name nameMyIP and the text My IP between
MainSwitch and MyIP.

The next arrangement is called ConfigIP, it is vertical, the background is yellow, the
height is 20% of the display and it takes up the entire width of the screen. I think you
can do it!?

Now to the setup. A spinner is a drop-down list from which entries can be selected by
touch. The entries are determined by a list. The terms are separated by commas.
The first term is already marked when the screen is displayed. A text box is an input
field, the content of which is accepted when you exit.

We define a list of IP addresses that represent possible goals of the project, WLAN
access point, ESP32 access point and PC for test purposes. The list looks like this:
Of course, you have to adapt the IP addresses to your network environment.

Default, 10.0.1.101,10.0.2.101,10.0.1.10

The selected address should be displayed in the text box at runtime in order to
communicate the selection and / or to enable changes.

The characteristics of the spinner are shown here.

Can you find out the properties of the txtFreeIP text box? I'll tell you the font size: 18.

Do you have everything? BackgroundColor: Orange, FontSize: 18, Width: Fill Parent,
Text: default, TextAlignment: center 1, TextColor: Blue.

A TableArrangement now follows with 2 columns and 2 rows. I call it DriveData. It fills
the entire width of the screen and contains 4 labels, the two on the left, txtVelo and
txtDir, for description and the right, lblVelo and lblDir, for indicating the speed and
direction of travel.

txtVelo and txtDir: FontSize: 14, Textalignment: right 2, Width: 50% Text: Speed |
direction

lblVelo and lblDir: FontSize: 20, FontBold, Text: 0

In the next arrangement (horizontal, height: 20%, width: Fill Parent) there is space for
two buttons, btnLight and btnMotor. The following applies to the buttons:
BackgroundColor: Green, FontSize: 30, Shape: rounded, TextAlignment: center 1,
Text LICHT | ENGINE.

In a subsequent horizontal arrangement, VeloMaxDisplay (Width: Fill Parent), there is
a description label, txtVeloMax (Width: 50%, TextAlign: center 1, Text: Maximum
speed) and a label lblVeloMax, which represents the rounded value of the following
slider.

A slider (aka slider) with the name sldVeloMax with the following properties forms the
end:

Our display now looks like this.

Now we are still missing two "invisible" elements, an accelerometer and the UDP
transmitter. The Accelerometer Sensor can be found in the Sensors palette folder.
Drag it onto the surface of the phone. It will be displayed below it.

Do you still know in which folder the
de.ullisroboterseite.ursai2udp.aix file is located?
We'll need this file next. We have to expand the
language scope of AI2 with it. Scroll down to the
bottom of the Palette, click on Extension and then
on Import extension.

In the following window, after clicking on Browse, navigate to the aix file.

After a few seconds after clicking on Import, two entries are displayed. Drag
UDPXmitter onto the surface of the phone. Your mobile phone now also knows the
UDP dialect and can send datagrams to the server on the Robot Car. If you want to
use this feature in other projects as well, you have to repeat the import process each
time after the new project has been created.

Programming

Now let's turn to programming. So far we have only provided data and objects. Now
we're bringing the whole thing to life, now you can stack building blocks. In the green
menu bar, use the Blocks button on the far right to switch to the programming window
of AI2.

On the left is the area for program blocks or modules with built-in blocks for text,
logic, data structures, mathematical functions and operators, variables and
procedures. Below that you will find the blocks of the elements that we have defined
so far.

In the viewer window we are now building our "houses" from the blocks for various
events. You can only put together building blocks that also fit together. This
corresponds to the syntax and semantic rules of MicroPython and other programming
languages. You may have come across blocks like in AI2. Tools like Squeak and
Scratch are based on the same method of programming. Behind this is the language
Smalltalk-80.

Admittedly, things are a bit bumpy for people who are used to freely writing program
texts. But honestly, how often do you make a mistake and then look for the mistakes?
If errors occur in Scratch or AI2, then these are logical errors, but not syntax errors.
Therefore, this type of programming is well suited for beginners and is often practiced
in schools.

We already prepare various variables, then we initialize the viewport. At the
beginning I will describe everything very precisely. In the further course the
information becomes sparse and is limited to essential things like the listing of the
properties. The colors of the different areas help with orientation. Unnamed structure
blocks come from the built-in area; the labeling of the named blocks reveals their
origin.

Drag an initialize global name to from Variables into the viewer. Add a 0 from Math to
it. Click on name and type xw, Enter. Repeat the process for yw.

Create a global variable targetIP and add a "" to it from the text. Then enter the IP
address of your PC. That should be enough to demonstrate the insertion and gluing
of blocks. We'll add more variables later.

Now pull a when Screen1 initialize bracket from Screen1.

A right click on the set UDPXmitter1 strip from UDPXMitter1 and a click on Duplicate
create a duplicate of the block. Glue the second to the first and in the second block,
change RemoteHost to RemotePort. Get a get from Variables and a 0 from Math.
Glue the get to RemoteHost and the 0 to RemotePort. Change the 0 to 9000 and in
the get block select targetIP.

Get a set MyIP.Text to from MyIP and stick a join of text to it. Glue a LocalHost and
LocalPort from UDPXmitter1 to the join. You need another point of contact for the
separating colon. A click on the blue symbol opens the setting window. Pull string
from the left half between the two in the right half and then add the colon.

If you don't have any error messages and warnings, you will surely be curious to see
how it all looks on your phone. Connect the mobile phone to the WLAN router and
start the AI2 Companion on the mobile phone.

It is particularly easy to establish contact between mobile phone and PC using the
QR code scan. On the PC side, start the process by clicking on Connect and AI
Companion.

Now scan the QR code with your mobile phone.

The progress bar runs through and then you have your draft with the first
programming result on the mobile phone display. The local IP of the smartphone is
displayed to the right of My IP. You can also tap the switch, open the spinner list and
operate the slider. So that this also triggers actions, we have to add a lot of code. By
the way, don't be alarmed, the connection to the cell phone is cut again relatively
quickly if no action is taken. This will not delete or change anything, you just have to
reconnect. If you later install the entire app on the mobile phone, there is no longer
any automatic disconnection.

This is how you bring the buttons for the driving lights and the motor relay to life.

As the names of the when brackets show, they come from the block pool of the
buttons btnLight and btnMotor. the function calls come from UDPXmitter1. The
command strings must be terminated with a linefeed, that is done by "\ n".

Now it’s up to the weirdo. To handle the selection, we create a local variable IPselect
and assign get selection from the selection field.

The rest of the "filling" is self-explanatory.

To determine the speed steps, we need a function that converts the floating raw
values from the accelerometer into usable integer values in the permissible range.
The slider is used to set the upper limit of the range. So that you can see the set
value, I assign the rounded value of the slider to lblVeloMax.Text. I need two new
global variables for the calculations.

To calculate the speed steps, I need the ratio of the maximum possible speed step
and the maximum absolute values of the accelerometer chip. I measured 9 of these
in all directions. The calculated value is available in VeloFaktor.

Just as the raw values come from the accelerometer, the signs for both axes are
complementary. In the function procedure2, after the introduction of some local
variables, the signum vz of the parameter x is calculated and, if not equal to zero,
inverted.

The speed step value is calculated using the following formula:

wert =vz*int((VeloFaktor * abs(x))+0,5)

The new global variable Result is used to return the result. So that this can be done
in one go, we also define two flags for xw and yw from the previous run.

This brings us to the last block. The accelerator values are recorded here, converted
to speed levels and if a value has changed, it is sent to the Robot Car. For all of this
to really happen, the MainSwitch must of course be on.

Now everything is in the box and it is time to complete the final function test on the
mobile phone. Start the Robot Car and connect your mobile phone and PC as you

did above. Mainswitch on, tilt the mobile phone forward and off you go. Take a few
bends, make a U-turn - perfect!

Then let's turn the project draft into a permanent app that you can install on the
phone. The application is always compiled in the AI cloud. Your project will also be
saved there and the apk file will be downloaded from there. The Build button offers
two options. With the first option, a QR code will be displayed approx. 1 to 2 minutes
after clicking. It contains the download url. Scan it in. The installation starts after the
download. Confirm the security questions all with 'yes'

The second option offers the download to your PC after the translation. Save the apk
file in any directory and then transfer it to your mobile phone using Bluetooth or
another method (e-mail, WWW, ...). robotcar.apk (apk = Android PacKage) probably
ends up in the download folder and it is in 'My Documents'. First check whether
setups can be carried out from this folder.

settings …

Own files …

After the final test, you should revoke the permission to install apps from the folder
'My Documents' for security reasons.

You can download an overview of the program blocks as a PDF. The robotcar.aia
project file is also available for download, as is the robotcar.apk setup file.
Unfortunately there is no listing for this project.

I hope you enjoy further experimenting with the Micropython and the Robot Car. You
can expand the mobile phone control with the release of the start for the autonomous
driving of your e-car. Of course, routines have to be written for this, for example for
following a track line. The same can be done there by adding another button to the
ESP32 hand control. Or how about an automatic garage door control via infrared
modules when the car approaches? The ESP32 offers all the prerequisites for this.

Catch the challenge!

Linkliste:

Teil1 HTML-Format

Teil2 HTML-Format

Teil1 deutsches PDF

 englisches PDF

Teil2 deutsches PDF

 englisches PDF

Teil3 deutsches PDF

 englisches PDF

https://www.grzesina.de/az/blog_robotcar/robotcar_mcp_d1.pdf
https://www.grzesina.de/az/blog_robotcar/robotcar_mcp_e1.pdf
https://www.grzesina.de/az/blog_robotcar/teil2/robotcar_mcp_d2.pdf
https://www.grzesina.de/az/blog_robotcar/teil2/robotcar_mcp_e2.pdf
https://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_d3.pdf
https://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_e3.pdf

