

Now we're going to get mobile - the electric car is coming. Well equipped with various
sensors and actuators, it offers extensive possibilities for developing your imagination
on the subject of electromobility. So welcome to the second part of

MicroPython and the Robot Car

As with the transmitter in the first part, the software for the control again consists of
two main parts. A function specially tailored to the robot car is used to control the
motor control board. In addition, the button module and the signal module are used
again. I have left out an OLED or LCD display because the characters cannot be
read at all from a great distance. There is an RGB LED for the feedback, which
shows the status of the circuit by means of color signals. But first things first.

The cover picture shows many of the pieces of equipment, but a list of these is
always clearer.

Material list

1 ESP32 Dev Kit C V4 unverlötet

1 KY-004 Taster Modul Sensor Taste Kopf Schalter

1 1-Relais 5V KY-019 Modul High-Level-Trigger für Arduino

3 KY-009 RGB LED SMD Modul Sensor für Arduino

1 KY-018 Foto LDR Widerstand Diode Photo Resistor

2 KY-033 Linien Folger Line Tracking Sensor Modul TCRT5000 für Arduino

2 KY-032 IR Hindernis Sensor Modul für Arduino

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?_pos=2&_sid=4d3306c04&_ss=r
https://www.az-delivery.de/products/button-modul?variant=8175996043360
https://www.az-delivery.de/products/relais-modul?variant=8138392043616
https://www.az-delivery.de/products/smd-rgb-modul?variant=8154187235424
https://www.az-delivery.de/products/licht-sensor-modul?variant=8176070197344
https://www.az-delivery.de/products/linienfolger-modul?variant=8160211992672
https://www.az-delivery.de/products/hindernis-sensor-modul?variant=8138382704736

1 AMS1117 3,3V Stromversorgungsmodul für Arduino Raspberry Pi – 1x
AMS1117

1 4-Kanal L293D Motortreiber Shield Schrittmotortreiber für Arduino Mega
2560 und UNO R3, Diecimila, Duemilanove

1 KY-018 Foto LDR Widerstand Diode Photo Resistor Sensor für Arduino

1 Robot Car Chassis mit zwei Motoren, zweirädrig incl. Batteriehalter und
Schalter

je 3 Widerstand für RGB-LEDs 1,2kΩ(grün), 390Ω(rot) und 1,0kΩ(blau)

einige Buchsenleistenabschnitte

einige Stiftleistenabschnitte

einige Jumperkabel

etwas dünne, isolierte Kupferlitze

diverse M3-Schrauben, Scheiben und Muttern

etwas doppelseitiges Klebeband (ablösbar)

einige Acrylglasreste nützlich, falls vorhanden

einige Stücke Lochrasterplatine etwa PCB Board Set Lochrasterplatte
Lochrasterplatine

Tools:
Soldering iron / soldering station + solder wire
small needle-nose pliers
small side cutter
Screwdriver, Phillips + flat slot
If available, an M3 thread cutter is helpful

Used software:
For flashing and programming the ESP:
Thonny or
µPyCraft

For testing the functionality of the transmitter:
ncat im Paket nmap

For testing the server on the vehicle
packetsender für Windows

Construction of the mechanics and assembly of the
electronic components
Setup begins with assembling the motors, tail wheel, and battery box. You don't need
a great description to do this, there is very little chance of going wrong.

Incidentally, in this project everything that did not fit was made to fit. This applies
above all to the assembly of the various hardware components, all of which had to be
mounted on pedestals or at least with spacers. Either there were connecting wires
from the bottom of the board like with the sensors or whole rows of pins had to be
supported like with the motor driver board for the Arduino, which I successfully
misused for my project. With this approach no new holes had to be made in the

https://www.az-delivery.de/products/ams1117-stromversorgungsmodul?variant=8192513769568
https://www.az-delivery.de/products/ams1117-stromversorgungsmodul?variant=8192513769568
https://www.az-delivery.de/products/4-kanal-l293d-motortreiber-shield-schrittmotortreiber?variant=13538209955936
https://www.az-delivery.de/products/4-kanal-l293d-motortreiber-shield-schrittmotortreiber?variant=13538209955936
https://www.az-delivery.de/products/licht-sensor-modul?_pos=1&_sid=fe26121ec&_ss=r
https://www.az-delivery.de/products/pcb-board-set-lochrasterplatte-platine-leiterplatte-4x4-stuck?_pos=2&_sid=97f1ca521&_ss=r
https://www.az-delivery.de/products/pcb-board-set-lochrasterplatte-platine-leiterplatte-4x4-stuck?_pos=2&_sid=97f1ca521&_ss=r
https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://nmap.org/dist/nmap-7.91-setup.exe
https://github.com/dannagle/PacketSender/releases/download/v7.0.5/PacketSender_x64_v7.0.6.exe

chassis plate of the robot Car can be drilled, but only into my mounting plates. With
its 2mm material thickness, the chassis is not really very robust.

With the ESP32 board it is better if you can get the unsoldered version. Then solder
the rows of pins so that the pins are facing up. The underside of the board is then
relatively smooth and can be easily attached to the surface with (removable) double-
sided adhesive tape. I used a piece of acrylic glass as a spacer. The wiring is then
done with socket strips or the Femail ends of the jumper cables.

The motors are 6V types and can be supplied directly from the 6V of the battery box.
So that the "power part" can be switched off from the ESP32, I have provided a relay.
It is high level triggered and is controlled by a GPIO pin of the ESP32.

In the front left of the picture, the developer button is mounted on a spacer. It is used
during development to specifically terminate the program at important points. This
can be used to control the program sequence in the production system. I make use of
this in the selection of the start mode in this project. The status RGB LED is located
in the center of the picture. The red and white cable in the background comes from
the 3.3V controller board, to the right of it the LDR is blurred and pointed upwards.

The view from the front reveals the positions of the distance sensors (far outside), the
headlights and, at the very bottom, the two sensors for a potential line control.

Last but not least, the only thing missing is the motor driver board with the two L293
ICs. I removed the 74HCT595 in order to have better and faster access to the motor
driver connections via its socket. Since I only have to control two wheels, one of the
two L293s serves as a switch for the headlights and, if you want, for the taillights,
which can be switched on automatically as soon as the "reverse gear" is switched on.
However, this feature is not (yet) included in the current expansion stage.

The wiring of the shield is done via screw terminals. The two motors are connected
on the left, red, black, black, red, the middle terminal is on GND level. The
connections may have to be swapped if the direction of travel is incorrect or the car
drives in a circle instead of straight ahead. At the bottom of the picture the power
supply comes from the relay. The entire circuit board can be disconnected from the
battery via the relay.
The next picture shows with the arrows the three lines that are directly soldered on.
In the red box you can see the wiring to the 74HCT595 socket, which is implemented
using a piece of breadboard. Pieces of wire with a diameter of 0.6mm protrude from
the bottom and serve as connectors. The wiring diagram below shows where these
lines must be connected to the ESP32.

g

After the mechanics, it is now time to seamlessly move on to the electrical side of the
system. I have a circuit diagram for this, which you better download as a PDF in A4.

I included the front sensors in the project because they are essential for autonomous
driving of the car. Above all, the two anti-collision sensors (aka obstacle avoidance
sensors) can also be used well for remote-controlled operation. Rapid response is
possible in the program through interrupt programming. If the adjustable distance to
an obstacle is not reached, this triggers a level change at the corresponding GPIO
pin. The resulting program interruption (aka interrupt) immediately switches off the
motors.

https://www.grzesina.de/az/blog_robotcar/teil2/server_schematic.pdf

The two RGB LEDs follow to the right in the circuit diagram. I chose them because
they emit very bright light, the color of which can be adjusted using the resistors
used. As you can see, the LEDs are not directly connected to a GPIO pin, but are
supplied directly from the 6V of the battery via a branch of the motor control. This is
still well within the amperage tolerances of the LEDs and results in more brightness.

The LDR enables the driving lights to be switched on, just like in real cars, depending
on the ambient brightness. The switching threshold can be set in the program. Of
course, you can also switch the light on by hand using a remote control - little bells
and whistles that make you happy.

The 6V battery supplies on the one hand the 3.3V regulator to which the entire
control electronics are attached, ESP32, sensors and signal LED and on the other
hand the "power" part of the motor control board and the relay coil. The operating
voltage for the two L293D is 2.8 to 5V and is also provided by the 3.3V regulator. The
control inputs of the motor shield get along well with the 3.3V signals from the
ESP32. This means you can save yourself various level converters. With the wide
range of voltage levels at the inputs, apart from the arrangement of the connections,
the shield can also be used directly for the ESP family without any problems.

After careful consideration, I decided to remove the 74HCT595 (shift register with
output latch and enable) in order to have direct access to the inputs of the L293D
drivers. It's much faster and, above all, easier. In serial operation, every level change
at the 8 outputs of the shift register would have to be tapped in by a driver routine. I
can now change each level individually from the ESP32 in one command via a GPIO
pin. If the shield is to be used differently later, the 74HCT595 can be used again.

On the relay module, on the underside of the board, a connection must be made from
the + 6V connection of the supply to the switching contact of the relay, then it is
sufficient to connect the normally open contact as an output to the motor shield.

The "developer button" at the GPIO32 input can serve various purposes. As with all
previous projects, I use it here as a cancel button at important points in the program.
As in the first part, it serves as a cancel button between the boot part of the program,
in which the connection to the WLAN router is established or, as in this case, a
separate access point can be set up, and the actual server part. In this project, it
would also be conceivable to use it at an early stage when starting the program in
order to choose between WLAN connection and your own access point setup. To do
this, a corresponding optical signal would have to be programmed so that you know
when to press the button. This is easily possible via the RGB signal LED.

Optical signals in this program are:
• Waiting for the connection to the WLAN router (red flashing)
• Abort option (steady yellow light)
• Ready to drive (steady blue light)
• left line sensor on black line (red continuous light)
• right line sensor on black line (green continuous light)
• Radio connection is established (headlights flash 3x briefly)

Light signals can be programmed using the beep.BEEP class. The button.BUTTONS
class provides button actions. The button objects are instantiated using
button.BUTTON32.

Unfortunately, there was also an unpleasant surprise during the preparations for this
episode. The search for the cause took almost a whole day because I did not want to
admit, what ultimately turned out to be obvious. After almost two weeks without
problems, the radio unit of the ESP32 Dev KitC V4 said goodbye overnight. I looked
for bugs in my program, often a stubborn typo creeps in that you haven't discovered
for a long time, but no, it wasn't. The wireless router worked perfectly, but I couldn't
get any contact from the ESP32 to it. The realization finally brought the use of
another module (ESP32 mini D1), which worked perfectly with the same program.
That said, after a few more tests, things were clear. So if something similar happens
to you sometimes, don't doubt yourself right away, but also question the proper
function of a component. This can be a transistor, an electrolytic capacitor, an IC or,
as here, the transmitter module of an ESP32.

Now let's get into programming. As already mentioned, the entire program consists of
two main parts. The establishment of a connection or the provision of an access point
represents the boot part. When this has been processed, the program reloads the
actual server part, provided that the "developer button" is not aborted.

The boot part itself consists of the essential boot sequence boot_essential.py, the
import and initialization of further modules for communication, interfaces.py and the
actual part for establishing the connection, wifi_connect_server.py or accesspoint.py.
This is followed by the "developer sequence" break_section.py, which allows the
program to be terminated at this point. After a termination, all declarations made up
to this point are available for experimentation via REPL.

If not aborted, the exec statement starts the server part server.py. This part includes
the preparation for the reception of UDP datagrams from the sender side and the
routines for the decoding and processing of received instructions. The actual server
part is very short, similar to the transmitter part from the last episode, and essentially
comprises three lines.

 request, addr = s.recvfrom(1024)

 act=request[0:4]

 service(act)

At the beginning, the pin assignments must be declared. This is followed by the
definition of the speed levels with their assignment to the PWM values, which can
range from 0 to 1023. The motors only start moving at a value of approx. 500. That
depends on the set PWM frequency and of course on the motor data itself.
Experimentation is the order of the day. The implementation in the program is kept

https://www.grzesina.de/az/blog_robotcar/teil2/beep.py
https://www.grzesina.de/az/blog_robotcar/teil2/button.py
https://www.grzesina.de/az/blog_robotcar/teil2/button.py
https://www.grzesina.de/az/blog_robotcar/teil2/boot_essential.py
https://www.grzesina.de/az/blog_robotcar/teil2/interfaces.py
https://www.grzesina.de/az/blog_robotcar/teil2/wifi_connect_server.py
https://www.grzesina.de/az/blog_robotcar/teil2/accesspoint.py
https://www.grzesina.de/az/blog_robotcar/teil2/break_section.py
https://www.grzesina.de/az/blog_robotcar/teil2/server.py

simple, you specify the maximum and minimum PWM value as well as a minimum
and maximum speed level. The program then generates a list of PWM values that
correspond to a specific speed level. The content of this list is output at the terminal
and can be checked there. The settings for the steering are determined in the same
way. During the calculation, the program monitors that the maximum PWM value,
taking the steering into account, cannot exceed 1023. The steering takes place by
adding the PWM speed value with the PWM value of the steering on the outer wheel
of the cam track. Difference is formed on the inner wheel. This means that the left
wheel turns faster when turning to the right than the right one and vice versa. The
best way to determine the optimal ratio between speed and steering values is
through experiments. There are three conceivable approaches to steering. I chose
the middle variant here.

1. Only the outer wheel rotates faster
2. The outer wheel turns faster, the inner wheel slower, minimally not at all
3. The outer wheel turns faster, the inner wheel can also turn in the opposite

direction

Here is the corresponding snippet from the service () function of the server part.

 if command=="d":

 D=abs(value)

 D=(D if D <=Sdmax else Sdmax)

 Yaw=Dir[D]

 Direction=(0 if value>=0 else 1) # rechts=0

 if Direction == 0: # nach rechts, links dreht schneller

 PWMLeft=Velocity+Yaw

 PWMRight=(Velocity-Yaw if Velocity>=Yaw else 0)

 else:

 PWMLeft=(Velocity-Yaw if Velocity>=Yaw else 0)

 PWMRight=Velocity+Yaw

To avoid malfunctions and program crashes, two safeguards are built in. The value
transmitted by the sender in value is, if necessary, truncated to Sdmax. The two lines
formatted in bold ensure that the PWM value on the inner wheel is the smallest if
zero. If you omit the two lines, you end up with option 1. The curve radius is smaller
with option 2 than with option 1.

The number of speed steps declared in the server part does not have to match the
number in the transmitter part. For a start it might be better to keep the number of
speed steps lower in the transmitter and higher in the server = vehicle. This forces
you to drive more moderately. The opposite case is slowed down by the vehicle
because if the transmitter's gear is too high, an error in the vehicle would make
control impossible by aborting the program. How many speed steps you program is
up to your personal preferences.

During the development, I carried out the entire test of the function of both program
parts individually, as far as possible. The next test level after the first program tests is
the "dry dock". To prevent the vehicle from skidding off when the motors were
activated, I put the vehicle up so that the wheels did not come into contact with the
ground. When everything went as expected, the boot part boot_server_wlan.py was
sent to the ESP32 as boot.py, as was the server part server.py, together with the

https://www.grzesina.de/az/blog_robotcar/teil2/boot_server_wlan.py

necessary modules, beep.py and button.py. the next time the ESP32 is restarted, the
system boots up autonomously. The controls worked as expected.

I used the freeware packetsender to test the individual functions on the vehicle. You
can enter control commands here by hand, send them to the server on the Robot Car
via UDP and test the reaction of the program and machine there. Then the hand
control takes over the command if everything works perfectly.

In the following you will find the listings of the two essential program parts boot.py
and server.py for a detailed review. Do not forget to enter the SSID of your WLAN
router and the associated password as well as an IP, the mask, the gateway and the
DNS of your local network. I preferred to set the IP permanently on the ESP32 and
not obtain it from the router's DHCP service. This is common for servers.

boot.py (connect to WLAN)

File: boot.py

Purpose: booting robot car server

Author: J. Grzesina

#****************** Beginn Bootsequenz *********************

Dieser Teil geht an den Anfang von boot.py

#******************** Importgeschaeft **********************

Dieser Teil wird immer von boot.py erledigt.

import os,sys

from time import time,sleep, sleep_ms, ticks_ms

from machine import Pin,I2C

import esp

esp.osdebug(None)

import gc # Platz fuer Variablen schaffen

gc.collect()

Bis hierher allgemeiner Boot-Teil

************** create essential objects *****************

------------- allgemeine Schnittstellen *****************

Pintranslator für ESP8266-Boards

LUA-Pins D0 D1 D2 D3 D4 D5 D6 D7 D8

ESP8266 Pins 16 5 4 0 2 14 12 13 15

SC SD FL L

I2C-Bus

SD = 21 # ESP32

SC = 22

i2c=I2C(-1, scl=Pin(SC), sda=Pin(SD))

https://www.grzesina.de/az/blog_robotcar/teil2/boot.py

Signal Klasse

from beep import BEEP

rot=12

gruen=13

blau=14

b=BEEP(None,rot,gruen,blau,200)

Taster

from button import BUTTONS,BUTTON32 #,BUTTON8266

entwicklerPin=32

t=BUTTONS() # stellt Methoden + Klassenattribute bereit

at=BUTTON32(entwicklerPin,invert=True,name="cancel")

LCD und OLED

#from lcd import LCD # braucht hd44780u.py

#HWADR=0x20

#CharPerLine=16

#Lines=2

#d=LCD(i2c,HWADR,CharPerLine,Lines)

from display import OLED # braucht ssd1306.py

d=OLED(i2c)

from display import LCD

d=LCD(i2c)

d=None

*************** Special boot section end *****************

******************* wifi_connect ***********************

Dieser Teil verbindet mit einem WLAN-Accesspoint

erfordert Klasse beep.BEEP, display.OLED | display.LCD

File: wifi.py

Rev.: robot car 1.1

Date: 2021-03-01

Author: Jürgen Grzesina (krs@grzesina.eu)

#****************ariablen deklarieren *********************

Die Dictionarystruktur (dict) erlaubt die Klartextausgabe

des Verbindungsstatus anstelle der Zahlencodes

connectStatus = {

 1000: "STAT_IDLE",

 1001: "STAT_CONNECTING",

 1010: "STAT_GOT_IP",

 202: "STAT_WRONG_PASSWORD",

 201: "NO AP FOUND",

 5: "GOT_IP"

 }

#****************Funktionen deklarieren ******************

def hexMac(byteMac):

 """

 Die Funktion hexMAC nimmt die MAC-Adresse im Bytecode

 entgegen und bildet daraus einen String fuer die Rueckgabe

 """

 macString =""

 for i in range(0,len(byteMac)): # Fuer alle Bytewerte

 macString += hex(byteMac[i])[2:] # ab Position 2 bis Ende

 if i <len(byteMac)-1 : # Trennzeichen

 macString +="-"

 return macString

******************** Get connected *********************

Netzwerk-Instanz erzeugen, ESP32-Stationmodus aktivieren;

moeglich sind network.STA_IF und network.AP_IF

beide gleichzeitig,

wie in LUA oder AT-based ist in MicroPython nicht moeglich

Create network interface instance and activate station mode;

network.STA_IF and network.AP_IF,both at the same time,

as in LUA or AT-based is not possible in MicroPython

import ubinascii

import network

request = bytearray(100)

act=bytearray(10)

nic = network.WLAN(network.STA_IF) # erzeuge WiFi-Objekt nic

nic.active(True) # Objekt nic einschalten

MAC = nic.config('mac') # # MAC-Adresse abrufen und

myMac=hexMac(MAC) # in eine Hexziffernfolge

umgewandelt

print("STATION MAC: \t"+myMac+"\n") # ausgeben

Verbindung mit AP im lokalen Netzwerk aufnehmen,

falls noch nicht verbunden

connect to LAN-AP

if not nic.isconnected():

 # Geben Sie hier Ihre eigenen Zugangsdaten an

 mySid = "YOUR_SSID_GOES_HERE"

 myPass = "PUT_YOUR_PASSWORD_HERE"

 # Zum AP im lokalen Netz verbinden und Status anzeigen

 nic.connect(mySid, myPass)

 # warten bis die Verbindung zum Accesspoint steht

 print("connection status: ", nic.isconnected())

 while not nic.isconnected():

 #pass

 print("{}.".format(nic.status()),end='')

 sleep(1)

 if b: b.blink(1,0,0,500,anzahl=1) # blink red LED

Wenn verbunden, zeige Verbindungsstatus & Config-Daten

print("\nconnected: ",nic.isconnected())

print("\nVerbindungsstatus: ",connectStatus[nic.status()])

nic.ifconfig(("10.0.1.101","255.255.255.0","10.0.1.20", \

 "10.0.1.100"))

STAconf = nic.ifconfig()

print("STA-IP:\t\t",STAconf[0],"\nSTA-NETMASK:\t",\

 STAconf[1],"\nSTA-GATEWAY:\t",STAconf[2] ,sep='')

Write connection data to OLED-Display

if d:

 d.writeAt(STAconf[0],0,0)

 d.writeAt(STAconf[1],0,1)

 d.writeAt(STAconf[2],0,2)

sleep(3)

******************* Abbruchoption ***********************

Falls gewuenscht Abbruch durch Tastendruck

erfordert die Klasse BUTTONS, BUTTTON32

if t.jaNein(tj=at,laufZeit=5,b=b) != t.JA :

 # tpNein touched between 5 sec or untouched at all start

server

 if d: d.clearAll()

 exec(open('server.py').read(),globals())

 #exec(open('sender1.py').read(),globals())

else: # falls das Pad an tpJa beruehrt wurde

 print("Die Bootsequenz wurde abgebrochen!")

 if d:

 d.clearAll()

 d.writeAt("ABGEBROCHEN",0,0)

***************** end wifi-connection*******************

If the ESP32 is to run with its own access point, simply replace the part formatted in
bold with the following sequence. The transmitter must then also be started for this
operating mode.

accesspoint.py

*************** Setup accesspoint *********************

try:

 import usocket as socket

except:

 import socket

import ubinascii

import network

nic = network.WLAN(network.AP_IF)

nic.active(True)

ssid="robotcar"

passwd="uranium238"

Start als Accesspoint

nic.ifconfig(("10.0.2.101","255.255.255.0",\

 "10.0.2.101","10.0.2.101"))

https://www.grzesina.de/az/blog_robotcar/teil2/accesspoint.py

print(nic.ifconfig())

Authentifizierungsmodi ausser 0 werden nicht unterstützt

nic.config(authmode=0)

MAC=nic.config("mac") # liefert ein Bytes-Objekt

umwandeln in zweistellige Hexzahlen ohne Prefix und in

String decodieren

MAC=ubinascii.hexlify(MAC,"-").decode("utf-8")

print(MAC)

nic.config(essid=ssid, password=passwd)

while not nic.active():

 if b: b.blink(1,0,0,500,anzahl=1)

print("Server Robot Car ist empfangsbereit")

if b: b.ledOn(0,1,1) # pink

sleep(3)

After a connection is available, the server can be started. This happens through the
exec statement at the end of the boot part. The server.py file must be located on the
ESP32 in the root directory \. The first two imports enable the isolated manual test of
the service () routine of the server part without a network connection having to exist.
In the production system, these imports are simply skipped and replaced by those in
the boot part.

server.py

File: server.py

Rev.: robot car 1.1

Date: 2021-03-17

Author: Jürgen Grzesina

***************** Server department *******************

try:

 sleep(0.1)

except:

 from time import sleep, sleep_ms

if not("sys" in dir()):

 import sys

from machine import PWM ,Pin,ADC

try:

 import usocket as socket

except:

 import socket

------------------ Variables -----------------------

https://www.grzesina.de/az/blog_robotcar/teil2/server.py

D1Pin=const(17) # Richtung

D2Pin=const(5) # Richtung

MPin=const(19) # Motor-Relais

LdistPin=const(27) # LDist

RdistPin=const(26) # RDist

LfollowPin=const(25)# LGuide

RfollowPin=const(33)# RGuide

Light1Pin=const(18) # L1

Light2Pin=const(15) # L2

LightEnablePin=const(23) # FrontLight enable

LDRPin=const(34) # Lichtsensor

LWheelPin=const(16) # LWheel

RWheelPin=const(4) # RWheel

Bearing=0 # rueckwaerts=1; vorwaerts=0

#BearingOld=0 # vorherige Fahrtrichtung

Velocity=0 # Betrag Geschwindigkeit

PWMFreq=200 # PWM-Frequenz

LWheel=PWM(Pin(LWheelPin),PWMFreq)

RWheel=PWM(Pin(RWheelPin),PWMFreq)

LWheel.duty(0)

RWheel.duty(0)

Dir1=Pin(D1Pin,Pin.OUT) # Richtungseingang 2+15 am L293D

Dir1.off()

Dir2=Pin(D2Pin,Pin.OUT) # Richtungseingang 7+10 am L293D

Dir2.off()

Direction=0 # 1=rechts+Yaw>=0, 0=links+Yaw<0

Yaw=0 # Betrag Lenkung PWM-Korrektur

PWMLeft=0 # PWM-Wert linker Motor

PWMRight=0 # PWM-wert rechter Motor

LGuide=Pin(LfollowPin,Pin.IN)

RGuide=Pin(RfollowPin,Pin.IN)

LDist=Pin(LdistPin,Pin.IN)

RDist=Pin(RdistPin,Pin.IN)

Motors=0 # Motorrelais schaltet Vcc2 am L296D

MotorRelais=Pin(MPin,Pin.OUT)

MotorRelais.value(0)

Light=0 # Scheinwerfer 1 oder 0

L1=Pin(Light1Pin,Pin.OUT)

L2=Pin(Light2Pin,Pin.OUT)

LightEnable=Pin(LightEnablePin,Pin.OUT)

LightEnable.value(0)

Enabled=0

LDR=ADC(Pin(LDRPin))

LDR.atten(ADC.ATTN_11DB)

LDR.width(ADC.WIDTH_10BIT)

LightThreshold=512

LDR.read()

Dark=LDR.read()<LightThreshold

Liste der Geschwingigkeiten erstellen

veloMax=800 # maximaler PWM-Wert fuer Geschwindigkeit

veloMin=490

Svmin=3

Svmax=20

StufeVelo=(veloMax-veloMin)//(Svmax-Svmin)

L=[veloMin+x*StufeVelo for x in range(Svmax-Svmin+1)]

Velo=[]

for i in range(Svmin):

 Velo.append(0)

Velo.extend(L)

Sdmin=2

Sdmax=11

dirMax=1023-veloMax

dirMin=dirMax//Sdmax

StufeDir=(dirMax-dirMin)//((Sdmax-Sdmin))

L=[dirMin+x*StufeDir for x in range(Sdmax-Sdmin+1)]

Dir=[]

for i in range(Sdmin):

 Dir.append(0)

Dir.extend(L)

print(StufeVelo,Velo,"\n",StufeDir,Dir)

--------------- Functions -----------------

IRQ-Service Routines

def stopMotor(pin):

 #global Motors, MotorRelais

 #Motors=0

 #MotorRelais(Motors)

 LWheel.duty(0)

 RWheel.duty(0)

 #print("Motorstopp")

def deviation(pin):

 if pin==LGuide:

 print(pin, "links lenken")

 b.ledOff()

 b.ledOn(1,0,0)

 else:

 print(pin, "rechts lenken")

 b.ledOff()

 b.ledOn(0,1,0)

functions controlled by buttons

def mainLight(state):

 global Enabled

 Enabled=state

 if state:

 L1.on()

 L2.off()

 LightEnable.on() # Lightenable-Pin auf 1

 else:

 LightEnable.off()

def mainOn():

 L1.on()

 L2.off()

 Enabled=1

 LightEnable.on()

def backLight(state):

 if state:

 L1.off()

 L2.on()

 LightEnable.on()

 else:

 LightEnable.off()

def blinkFront(pulse,pause,cnt):

 h_enabled=Enabled

 if Enabled:

 LightEnable.off()

 sleep_ms(pause)

 for i in range(cnt+1):

 mainOn()

 sleep_ms(pulse)

 LightEnable.off()

 sleep_ms(pause)

 if h_enabled:

 mainOn()

def service(action):

 global Bearing, Yaw, Velocity

 global Motors, Light

 global Direction

 global PWMLeft, PWMRight

 #global BearingOld#,Dir1,Dir2

 #act=action.decode("utf-8")

 act=action.decode("utf8")

 command=act[0]

 value=int(act[2:])

 #print("Kommando: {} Wert: {}".format(command, value))

 if command=="m":

 Motors=(0 if Motors else 1) # Motorrelais umschalten

 MotorRelais.value(Motors)

 LWheel.duty(0)

 RWheel.duty(0)

 if command=="l":

 Light=(0 if Light else 1) # Licht an/aus

 mainLight(Light)

 if command=="v":

 V=abs(value)

 V=(V if V <=Svmax else Svmax)

 Velocity=Velo[V]

 Bearing=(1 if value>0 else 0) # vor=0

 if command=="d":

 D=abs(value)

 D=(D if D <=Sdmax else Sdmax)

 Yaw=Dir[D]

 Direction=(0 if value>=0 else 1) # rechts=0

 if Direction == 0: # nach rechts, links dreht schneller

 PWMLeft=Velocity+Yaw

 PWMRight=(Velocity-Yaw if Velocity>=Yaw else 0)

 else:

 PWMLeft=(Velocity-Yaw if Velocity>=Yaw else 0)

 PWMRight=Velocity+Yaw

 if Bearing:

 Dir1.off()

 Dir2.on()

 else:

 Dir1.on()

 Dir2.off()

 #print("v={}; b={}".format(Velocity,Bearing))

 #print("Y={}; D={}".format(Yaw, Direction))

 #print("PWML={}; PWMR={}".format(PWMLeft,PWMRight))

 LWheel.duty(PWMLeft)

 RWheel.duty(PWMRight)

 lw=LDR.read()

 Dark=(1 if lw > LightThreshold else 0)

 #print("LDR", lw, Dark)

 #backLight(Velocity and (not Bearing))

 mainLight(Dark or Light)

------------------ Vorbereitungen -------------------

LDist.irq(trigger=Pin.IRQ_FALLING, handler=stopMotor)

RDist.irq(trigger=Pin.IRQ_FALLING, handler=stopMotor)

#LGuide.irq(trigger=Pin.IRQ_FALLING,handler=deviation)

#RGuide.irq(trigger=Pin.IRQ_FALLING,handler=deviation)

Motors=1

MotorRelais(Motors)

blinkFront(500,500,1)

#sys.exit()---

----------------- Server starten --------------------

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.bind(('', 9000))

print("Socket estblished, waiting...")

blinkFront(200,300,3)

b.ledOff()

b.ledOn(0,0,1)

-------------- Serverschleife -----------------------

while True:

 request, addr = s.recvfrom(1024)

 act=request[0:5]

 #print('from {}\nContent = {}'.format(addr,str(request)))

 service(act)

The service (action) function receives most of the codes sent by the sender from the
UDP receiving loop. These are the command prefix and the value after the colon
including the sign, which can therefore have a maximum of 3 digits, i.e. a total of up
to 5 characters. This information is decoded in a sequence of if constructs and
converted into actions. Particularly urgent reactions that are requested by level
changes in the front sensors are handled asynchronously by program interruptions
and the assigned IRQ service routines.

The server understands, for example, the following commands from the sender.

v: 5 means speed step 5 forward, v stands for velocity.
v: -4 then means with speed step 4 backwards
d: 6 we go to the right at level 6, d stands for direction
d: -6 the same to the left
l: 1 (small L) light on, off, on, off ...
m: 1 motors on, off, on, off ...

When the distance sensors respond, the motor relay is switched off. That'll do it
Interruptserviceroutine stopMotor().

LDist.irq(trigger=Pin.IRQ_FALLING, handler=stopMotor)

RDist.irq(trigger=Pin.IRQ_FALLING, handler=stopMotor)

A reference to the ISR is passed to the named parameter handler as a callback
function when the pin objects LDist and RDist are defined as IRQ sources. The
program interruption is requested here when the level on the pins drops from 1 to 0.
Pin.IRQ_RISING would be specified for rising edges. Both edges are recognized by
oring the constants.

If the ambient brightness decreases during operation, the headlights are switched on
automatically, regardless of whether or not the "lights on" command was issued by
the hand control beforehand. It is only important that the hand control is in operation.
Then v and d commands are constantly sent, which force the server into the decoder
loop. In the course of this, the LDR on the vehicle is also queried.

For autonomous driving, the functions of the interrupt service routines (aka ISR) of
the line followers still have to be equipped with code aimed at triggering an automatic

https://www.grzesina.de/az/glossar.html#ISR

steering movement. Here you are called upon to research in detail. You already know
how steering movements are caused on the vehicle.

The distance sensors cause problems in treatment, because neither of them provide
clear edges, neither when approaching too much nor when moving away from the
obstacle. Measurements with the DSO have shown that there is always a pulse train
with a changing pulse-pause ratio (mean period approx. 1 ms). Depending on the
distance to the obstacle, these pulse sequences are between approx. 50ms and
280ms apart, in between I measured GND potential. The rest position of the distance
sensors is the HIGH level. It must be checked whether an ultrasonic distance sensor
or a time-of-flight sensor is more suitable.

This question may be answered in the next post, which will definitely be about an
alternative control option for the robot car. Until then, I hope you enjoy building it and
making your first driving tests with the MicroPython-controlled Robot Car.

Here you will find a list of all the program parts used. The graphic illustrates their use.

Datei Klasse description

beep.py BEEP Methods for optical and acoustic signals

button.py BUTTONS,
BUTTON32
BUTTON8266

Methods for reading keys

boot_essential.py basic imports for system control, timing
and GPIO handling

interfaces.py Imports for signal control, key operation
and display control

break_section.py Abort option via a button during an optical
signal

wifi_connect_server.py generally establish a connection to a
WLAN access point as a server

accesspoint.py starts the ESP32 as an access point

server.py Server program part with UDP reception,
decoding of instructions and
implementation in control actions for the
vehicle. Scanning the sensors and
reacting to distance events using IRQ
routines.

boot_server_wlan.py Contains all program parts that are
necessary to boot the system and set up
the WLAN connection, including
termination conditions. The entire content
can be transferred to the boot.py file for
an autonomous start.

https://www.grzesina.de/az/blog_robotcar/teil2/beep.py
https://www.grzesina.de/az/blog_robotcar/teil2/button.py
https://www.grzesina.de/az/blog_robotcar/teil2/boot_essential.py
https://www.grzesina.de/az/blog_robotcar/teil2/interfaces.py
https://www.grzesina.de/az/blog_robotcar/teil2/break_section.py
https://www.grzesina.de/az/blog_robotcar/teil2/https:/www.grzesina.de/az/blog_robotcar/teil2/wifi_connect_server.py
https://www.grzesina.de/az/blog_robotcar/teil2/accesspoint.py
https://www.grzesina.de/az/blog_robotcar/teil2/server.py
https://www.grzesina.de/az/blog_robotcar/teil2/boot_server_wlan.py

Links zum Teil 1
Link zur deutschen PDF-Fassung
Link zur englischen PDF-Fassung

Links zum Teil 2
Link zur deutschen PDF-Fassung
Link zur englischen PDF-Fassung

https://www.grzesina.de/az/blog_robotcar/robotcar_mcp_d1.pdf
https://www.grzesina.de/az/blog_robotcar/robotcar_mcp_e1.pdf
https://www.grzesina.de/az/blog_robotcar/teil2/robotcar_mcp_d2.pdf
https://www.grzesina.de/az/blog_robotcar/teil2/robotcar_mcp_e2.pdf

