

Abbildung 1: Die Baum-Geschichten

Diesen Beitrag gibt es auch als PDF in Deutsch.
This episode is also availlable as PDF-document in english.

Stories usually start with "Once upon a time". The following stories take place today
and now. Today we're going to develop a few projects around a very special kind of
Christmas tree.

What is meant is a tree approx. 11.5 cm high with 36 (37) colored lights on it. They
flash in all colors merrily. But they more or less always do it in the same way. That
gave me the idea to bring some order into the chaos with a few additional
components. The result is a controller with an ESP32 and various sensors, which
illuminate the LEDs for various measurement tasks or simply cause astonishment. In
the following chapters, I will introduce you to part of what would be possible as a
whole. All applications are of course programmed in MicroPython. So welcome to the

http://www.grzesina.de/az/weihnachtsbaum/baumgeschichten_ger.pdf
http://www.grzesina.de/az/weihnachtsbaum/baumgeschichten_eng.pdf

MicroPython stories about a small Christmas tree

Contents:

1. The parts list
2. The software
3. We build the tree and wire it up
4. Targeted illumination
5. The OLED display for plain text information
6. Graduated glow
7. The enchanted tree
8. Who is making such a noise?
9. On the trail of the sapling claw
10. ESP32 and DHT22 / DHT11 wish you a pleasant stay
11. The somewhat different Christmas raffle
12. The Christmas tree app

The part list

1 DIY LED Weihnachtsbaum Kit

1 KY-009 RGB LED SMD Modul Sensor oder
KY-016 FZ0455 3-Farben RGB LED Modul 3 Color

1 1,3 Zoll OLED I2C 128 x 64 Pixel Display kompatibel mit Arduino und
Raspberry Pi

1 DHT22 AM2302 Temperatursensor und Luftfeuchtigkeitssensor

1 KY-021 Magnet Schalter Mini Magnet Reed Modul Sensor

1 RFID Keycard Card 13,56MHz Schlüsselkarte Karte MF S50 (13,56 MHz) – 10x
RFID Karte

1 RFID Kit RC522 mit Reader, Chip und Card für Raspberry Pi und Co.
(13,56MHz)

1 Breadboard Kit - 3 x 65Stk. Jumper Wire Kabel M2M und 3 x Mini Breadboard
400 Pins kompatibel mit Arduino und Raspberry Pi

1 KY-038 Klangerfassungsmodul Mikrofon Voice- Ton Sensor

1 ESP32 NodeMCU Module WLAN WiFi Development Board mit CP2102

1 GY-521 MPU-6050 3-Achsen-Gyroskop und Beschleunigungssensor alternativ
Rüttelkontakt KY-020 oder KY-002 (*)

1 Jumper Wire Kabel 3 x 40 STK. je 20 cm M2M/ F2M / F2F

3 Widerstand 1,0kΩ

(*) The use of the vibrating contacts requires different programming.

https://www.az-delivery.de/products/diy-weihnachtsbaum-kit-alles-inklusive-versandkostenfrei
https://deref-1und1.de/mail/client/gMBtdSTIDVY/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Fsmd-rgb-modul%3Fvariant%3D8154187235424
https://www.az-delivery.de/products/led-rgb-modul
https://deref-1und1.de/mail/client/JOTMHCkQVFk/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2F1-3zoll-i2c-oled-display%3Fvariant%3D6571890704411
https://deref-1und1.de/mail/client/JOTMHCkQVFk/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2F1-3zoll-i2c-oled-display%3Fvariant%3D6571890704411
https://deref-1und1.de/mail/client/9b8ZXy7U1Jk/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Fdht22%3Fvariant%3D30426040658
https://deref-1und1.de/mail/client/4fXwBLyuocI/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Freed-sensor-modul%3Fvariant%3D8160395198560
https://deref-1und1.de/mail/client/d0ClYkoCTqU/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Frfid-karten-13-56-mhz-weiss%3Fvariant%3D13546715283552
https://deref-1und1.de/mail/client/d0ClYkoCTqU/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Frfid-karten-13-56-mhz-weiss%3Fvariant%3D13546715283552
https://deref-1und1.de/mail/client/gdpKdocXUM0/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Frfid-set%3Fvariant%3D27479304969
https://deref-1und1.de/mail/client/gdpKdocXUM0/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Frfid-set%3Fvariant%3D27479304969
https://deref-1und1.de/mail/client/yT1pIECfwOk/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Fbreadboard-kit-3-x-65stk-jumper-wire-kabel-m2m-und-3-x-mini-breadboard-400-pins-fuer-arduino-raspberry-pi%3Fvariant%3D18746780713056
https://deref-1und1.de/mail/client/yT1pIECfwOk/dereferrer/?redirectUrl=https%3A%2F%2Fwww.az-delivery.de%2Fproducts%2Fbreadboard-kit-3-x-65stk-jumper-wire-kabel-m2m-und-3-x-mini-breadboard-400-pins-fuer-arduino-raspberry-pi%3Fvariant%3D18746780713056
https://www.az-delivery.de/products/mikrofon-modul-klein
https://www.az-delivery.de/products/esp32-developmentboard
https://www.az-delivery.de/products/gy-521-6-achsen-gyroskop-und-beschleunigungssensor?variant=18282745561184
https://www.az-delivery.de/products/shake-shock-sensor-modul
https://www.az-delivery.de/products/schock-sensor-modul
https://www.az-delivery.de/products/3er-set-40-stk-jumper-wire-m2m-f2m-f2f

2. The Software

For flashing and programming the ESP32:
Thonny oder
µPyCraft
packetsender zum Testen des ESP32/ESP8266 als UDP-Server
Browser: Opera oder Chrome

Verwendete Firmware:

MicropythonFirmware
Bitte eine Stable-Version aussuchen

MicroPython-Programs of the project:

MIT-Lizenz-Text
Device driver:
gy521rc.py
mfrc522.py
sh1106.py
oled.py

Projektdateien:
movementalarm.py
noisy.py
rfid.py
roomclimate.py
steigerung.py
verzaubert.py
webcontrol.py

MicroPython - Language - Modules and Programs

You can find detailed instructions for installing Thonny here. There is also a description
of how the Micropython firmware is burned onto the ESP chip.

MicroPython is an interpreter language. The main difference to the Arduino IDE,
where you always and exclusively flash entire programs, is that you only have to
flash the MicroPython firmware once at the beginning on the ESP32 before the
controller understands MicroPython instructions. You can use Thonny, µPyCraft or
esptool.py for this. I have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. This is exactly what bothers me
about the Arduino IDE. You simply save an enormous amount of time if you can do
simple tests of the syntax and hardware through to trying out and refining functions
and entire program parts via the command line before you knit a program out of it.
For this purpose I also like to create small test programs over and over again. As a

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://github.com/dannagle/PacketSender/releases/download/v7.0.5/PacketSender_x64_v7.0.6.exe
https://micropython.org/download/all/
https://micropython.org/download/all/
http://www.grzesina.de/az/weihnachtsbaum/MIT-License.txt
http://www.grzesina.de/az/weihnachtsbaum/gy521rc.py
http://www.grzesina.de/az/weihnachtsbaum/gy521rc.py
http://www.grzesina.de/az/weihnachtsbaum/mfrc522.py
http://www.grzesina.de/az/weihnachtsbaum/sh1106.py
http://www.grzesina.de/az/weihnachtsbaum/oled.py
http://www.grzesina.de/az/weihnachtsbaum/movementalarm.py
http://www.grzesina.de/az/weihnachtsbaum/noisy.py
http://www.grzesina.de/az/weihnachtsbaum/rfid.py
http://www.grzesina.de/az/weihnachtsbaum/roomclimate.py
http://www.grzesina.de/az/weihnachtsbaum/steigerung.py
http://www.grzesina.de/az/weihnachtsbaum/verzaubert.py
http://www.grzesina.de/az/weihnachtsbaum/verzaubert.py
http://www.grzesina.de/az/weihnachtsbaum/webcontrol.py
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html
https://micropython.org/download/all/
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen

kind of macro, they combine recurring commands. From such program fragments,
entire applications can develop.

Autostart

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

Testing programs

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

In between, Arduino IDE again?

If you want to use the controller together with the Arduino IDE again later, simply
flash the program in the usual way. However, the ESP32 / ESP8266 then forgot that
it ever spoke MicroPython. Conversely, every Espressif chip that contains a compiled
program from the Arduino IDE or the AT firmware or LUA or ... can easily be provided
with the MicroPython firmware. The process is always as described here.

3. We build the tree and wire it up

There is a video showing how to assemble the tree. Of course, after assembling the
tree, you can sit back and relax and admire its work. It's even more fun if we change
the assembly process in a few places. In three places in the video we have to
proceed differently for our project. The 4.7kΩ resistors mentioned there are those
with 10kΩ in the package of parts. And these three per board A and B are only
soldered at the points on the board, as shown in Figures Fig.2 and Fig.3, the other
end of these resistors remains free for the time being. Later we solder thin cables (for
example flat ribbon) to these free ends for the connection to the ESP32. This applies
to both boards, A and B. The electrolytic capacitors are completely removed.

http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen
https://www.youtube.com/watch?v=IiUUxx0pUEA

Abbildung 2: Teil_A

Abbildung 3: Teil_B

The rest of the construction can be done exactly according to the video template.
When the base plate is on, we solder the cables to the free ends of the 10kΩ
resistors. The length should be between 25 and 30 cm. At the other end of the cable
we solder a piece of pin header so that the thing can be plugged in.

Abbildung 4: The Tree-Connection

The assignment of the connections on the tree to the GPIOs of the ESP32 can be
seen in Table 1. The index refers to the list of pin objects. This list, named layer, is
used to address the LED layers by looping, as we'll see later. The connections are
distributed in such a way that an even-numbered index is always followed by the
same-layer LED layer on board B. Of course, any changes are possible at any time.

Bäumchen A1 B1 A2 B2 A3 B3

GPIO 32 26 33 27 25 12

Index 0 1 2 3 4 5
Tabelle 1: Verbindungen zwischen Bäumchen und ESP32

Abbildung 5: Basisverdrahtung

http://www.grzesina.de/az/weihnachtsbaum/Weihnachtsbaum_Verdrahtung.pdf

Abbildung 6: Basiswiderstände an Teil B – Detail, freie Enden liegen oben

Abbildung 7: Verkabelt an Teil A

4. Targeted illumination

Is the wiring done? Then we want to light the LEDs on the tree. We supply the tree
either with batteries or with the supplied cable from a USB port. After switching on it
stays dark. Sure, because the base connections of the Transtoren are exposed, so
no base current can flow and because then no collector current flows, the LEDs
remain dark.

Abbildung 8: Eine von 6 Transistorstufen

This changes when the GPIOs are programmed as outputs and the level of GND
potential is raised to 3.3V. We do this by assigning a 1 as the value. We enter the
following lines in Thonny's terminal.

>>> from machine import pin
>>> a1 = Pin (32, Pin.OUT, value = 0)
>>> a1.value (1)

If the wiring is correct, the LEDs of level A1 will start to light up, after entering

>>> a1.value (0)

to go out. In contrast to the previous version of the tree kit, the new version is
equipped with flicker LEDs. Before that, it was simply colored LEDs. This has a
certain disadvantage because it is no longer possible to dim the "Flashing LEDs".
Still, it's fun to experiment with. Using the six transistors, we are now able to start or
switch off all 6 levels exactly as we wish. This also influences the overall brightness.

The arrangement of the lights is shown in Fig. 9. It applies to both part A and part B..

Abbildung 9: Verteilung der LEDs – erfolgt reihum

The arrangement of the LEDs, the wiring to and the connections on the ESP32 are
assumed for all further experiments. They therefore no longer appear explicitly in the
descriptions and circuit diagrams of the subcircuits.

5. The OLED display

The OLED display can provide us with plain text information, but it can also display
graphics in black and white. Programming is easy when we use the associated
MicroPython software modules. The hardware driver SH1106 is directly responsible
for the 1.3 '' display and can only be used for this. The module framebuf integrated in
the MicroPython core provides simple graphic and text commands and the module
oled.py gives us convenient commands for text output.

The display is only controlled via the two lines of the I2C bus. We create an I2C
object and pass it to the constructor of the OLED class. The hardware device
address of the display is fixed and anchored in OLED as a constant. Nevertheless,
we first look to see what is on the bus. Then we clear the screen and print a few
lines.

The graphic in Fig. 10 and the following program demonstrate the handling. We enter
the program in the Thonny editor, save it and then start it with the function key F5.

Abbildung 10: Das OLED am ESP32

oledtest.py
OLED-Display-Demo

from machine import Pin, I2C

from time import sleep

from oled import OLED

Initialisieren der Schnittstelle **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

print(i2c.scan())

d=OLED(i2c)

d.clearAll()

d.writeAt("Der",0,0,False)

d.writeAt("kleine",0,1,False)

d.writeAt("Weihnachts-",0,2,False)

d.writeAt("baum",0,3)

sleep(4)

d.clearFT(0,2,15,2,False)

d.writeAt("Christ-",0,2)

Output:
[60]
this is the constructor of the OLED class
Size: 128x64

The device address of the display is decimal 60 or 0x3C hexadecimal. The OLED
class constructor also knows that the display has 128 x 64 pixels. After the four lines
have been output, "Christmas-" is replaced by "Chist-" 4 seconds later. Before doing
this, of course, we have to delete this line. You can also try out the individual
commands individually via REPL, Thonny's terminal console.

http://www.grzesina.de/az/weihnachtsbaum/oledtest.py

6. Graduated glow

Since we can control the individual levels of the LEDs on the tree separately, we take
advantage of this to go up and down from the lowest level - OFF - to maximum
brightness. We don't need to change anything in the circuit. The display informs us
about the currently active level.

steigerung.py
steigerung.py

import sys

from machine import Pin, I2C

from oled import OLED

from time import sleep, sleep_ms

Initialisieren der Schnittstellen **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

LED-Schichten einrichten *******************************

#schichtPin = [32,33,25,27,26,12] # sortiert

schichtPin = [32,26,33,27,25,12] # verteilt

schicht=[0]*6

for i in range(6): # Ausgaenge erzeugen und auf 0

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

Funktionen defnieren ***********************************

def switch(n,val): # Ebene n ein-/ausschalten

 schicht[n].value(val)

def stop(): # alle LED-Ebenen aus

 d.writeAt("GOOD BYE",4,3)

 for i in range(6):

 switch(i,0)

def alle(): # alle LED-Ebenen ein

 for i in range(6):

 sleep_ms(300)

 switch(i,1)

Hauptprogramm **

d.clearAll()

d.rect(4,16,123,40,1) # Rechteck in Pixelwerten

for j in range(3):

 for i in range(6):

 d.writeAt("Ebene: {} ein".format(i),2,3)

 switch(i,1)

 sleep_ms(3000)

 for i in range(5,-1,-1):

 d.writeAt("Ebene: {} aus".format(i),2,3)

http://www.grzesina.de/az/weihnachtsbaum/steigerung.py

 switch(i,0)

 sleep_ms(3000)

d.clearFT(2,3,14,3,False)

stop()

We define the order of the layers in the layerPin list. The pin objects are generated
according to this pattern in the following for loop. The functions switch (), stop () all of
us () help us to make the program clearer. We will also use them several times in the
following chapters.

In the main program we clear the screen and draw a frame. 4 and 16 are the pixel
coordinates of the top left corner, 123 and 40 are the width and height in pixels and 1
is the color white, there are no more colors. The outer for loop counts the total
number of passes. The first inner for loop counts i up at intervals of 3 seconds and
switches the levels on. The second loop counts down and turns off the LEDs again.

The last output is removed and the stop () function reliably extinguishes all LEDs and
says goodbye with a friendly "GOOD BYE".

We can fully specify the behavior of the LEDs ourselves via the interval length and
the number of runs.

7. The enchanted tree

Anyone could come along and want to turn on our little tree. But nothing there, that
can only be done by our magic hands. Of course we are not saying that we have
hidden a small neodymium magnetic stick in each hand. Why do we need it? Just for
"magic". Because we have now rebuilt our circuit. A reed contact to ground is now
connected to GPIO pin 13. In the glass tube there is a switching contact that closes
when a magnet approaches.

Attention:
The glass is very brittle and the wires are very stiff. Do not bend on it,
otherwise the glass will splinter and you can bury the component.

Abbildung 11: Reedkontakt hilft zaubern

We must not forget something else, namely that the OLED and the little tree remain
connected as described above.

verzaubert.py
from os import uname

import sys

from machine import Pin, I2C

from oled import OLED

from time import sleep_ms

Initialisieren der Schnittstellen **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

taste=Pin(0,Pin.IN,Pin.PULL_UP)

reed=Pin(13,Pin.IN,Pin.PULL_UP)

LED-Schichten einrichten *******************************

schichtPin = [32,33,25,26,27,12]

schicht=[0]*6

for i in range(6):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

Funktionen defnieren ***********************************

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.writeAt(" MUGGLE ",1,3)

 for i in range(6):

 switch(i,0)

def alle():

 d.writeAt(" DUMBLEDOR ",1,3)

 for i in range(6):

 sleep_ms(300)

 switch(i,1)

Hauptprogramm **

d.clearAll()

d.writeAt("Kannst du ...",0,0)

d.writeAt("ZAUBERN???",0,1)

while 1:

 if reed()==0:

 alle()

 else:

 stop()

The reed contact must be attached in such a way that we can get close to it with our
magnet when we place a tree or breadboard on the palm of the hand. A thin black

http://www.grzesina.de/az/weihnachtsbaum/verzaubert.py

glove helps us to keep the magnet invisible. Most likely everyone around you is
Muggles.

The program is very simple. We already know everything up to the main program.
The while loop runs endlessly until the power is switched off. If the contact in the
vicinity of the magnet is closed, then GPIO13 is at GND potential and all lights go on.
Otherwise the resistor built into the module will pull the GPIO13 to Vcc = 3.3V and
the lights will go out.

So that the magic works better, the tree with breadboard should be powered by the
battery. The plus connection of the battery must be connected to pin Vin / 5V of the
ESP32. Furthermore, the program must then be uploaded to the ESP32 as boot.py
so that the controller starts up autonomously after being switched on. How this works
is described in detail in Chapter 2 - Autostart.

8. Advent and Christmas, the "staade" time.

"Staad" translated into general
German usage means something
like "calm", "contemplative".
However, everyday life teaches us
that things can get tough even in the
run-up to Christmas. If it gets too
turbulent, the tree warns you to
switch back a few decibels. How
does it do that? Now there is a
sound module that picks up sound
and delivers the digitized signal to
the ESP32.

Abbildung 12: Soundmachine am ESP32

noisy.py
noisy.py

import esp32

from os import uname

from machine import Timer, Pin, I2C

from oled import OLED

from time import time, sleep,

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

IRQ-Steuerung durch Soundmodul

ST=Timer(1)

sound=Pin(17,Pin.IN)

LED-Schichten einrichten *******************************

schichtPin = [32,33,25,27,26,12]

L=len(schichtPin)

schicht=[0]*L

for i in range(L):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

Funktionen defnieren ***********************************

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.clearAll()

 d.writeAt("ALLES GUT",4,2)

 for i in range(L):

 switch(i,0)

def alle():

 d.clearAll()

 d.writeAt("ZU LAUT!!",0,0)

 for i in range(L):

 sleep(0.5)

 switch(i,1)

def soundDetected(pin):

 global n

 if pin==Pin(17):

 sound.irq(handler=None)

 if n:

 return

 n=True

 ST.init(period=15000, mode=Timer.ONE_SHOT,\

 callback=soundDone)

 print("begin",time())

 alle()

http://www.grzesina.de/az/weihnachtsbaum/noisy.py

def soundDone(t):

 global n

 n=False

 print("ende",time())

 stop()

 sound.irq(handler=soundDetected, trigger=Pin.IRQ_FALLING)

Hauptprogramm ***

n=False

sound.irq(handler=soundDetected, trigger=Pin.IRQ_FALLING)

Sound is transmitted through rapid pressure fluctuations in the air. A sound signal
propagates at approx. 340 m / s. In a room with practically no noticeable delay. The
microphone in the sound module converts the pressure fluctuations into an electrical
signal. In contrast to the reed contact, these oscillations can no longer be recognized
by querying the GPIO port; this process is too slow. That's why we're using a different
technique here, interrupt programming. An interrupt is the interruption of a program
by a certain event. We are going to use two different sources of interruption. One
triggers an interruption when the level on a GPIO pin changes from 0 to 1 or vice
versa. The other IRQ source is a hardware timer of the ESP32. It triggers the IRQ
when the alarm goes off.

Both of them now alternately pass the ball to each other. The GPIO17 waits for a
signal from the sound module. If a falling edge occurs, the function soundDetected ()
starts and first checks whether it is meant based on the transferred parameter pin. If
n is True, then a cycle is already running and there is nothing more to be done. If, on
the other hand, n is False, then it is a fresh job. The Pin-Change-IRQ is switched off
and n is set to True in order to suppress immediately following pulses at GPIO17.
Then the timer is started, which specifies the runtime of the tree lighting. The lighting
is switched on by calling up all ().

If the timer has expired, the associated interrupt is triggered, which starts the
soundDone () function. n is set to false, the lights go out, and the pin change IRQ is
armed again.

The main program consists of just two lines. n is set to false so that the subsequently
activated pin change IRQ can be triggered.

The interesting thing is that the IRQs are still active even after the main program has
ended. To switch this off, the ESP32 must be reset with the STOP / RESTART
button.

9. On the trail of the tree stealer

There are supposed to be people who steal their Christmas tree - from the forest.
Well, dear foresters, do as we do and build a guardian like the one we are about to
describe in your little trees.

OK, admittedly that will be just as difficult as monitoring other bans when there is no
staff. Then why do you forbid something if you cannot control it? So be it.

Our sapling gets a supervisor - namely itself! He is helped by a sensor that comes
from a completely different corner. The GY-521 module used with the MPU6050
component is an accelerometer with a gyroscope. This can be used to measure
accelerations, forces and rotations. Yes, and if you want to take something away, you
have to lift it up and set it in motion. In both cases the object is accelerated. Even
very small changes in location generate forces and thus our sensor to respond. The
rest is simple, after the triggering, the tree is illuminated and the potential thief
hopefully runs away. A timer interrupt is responsible for the duration of the alarm.

Abbildung 13: Antiklau-Einheit

alarm.py
alarm.py

RED-ALLERT by movement

import esp32

from os import uname

from machine import Timer, Pin, I2C

from oled import OLED

from time import sleep,ticks_ms, ticks_us, sleep_ms

from gy521rc import GY521

Initialisieren der Schnittstellen **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

AT=Timer(0)

acc=GY521(i2c)

limit=36

dauer=5000

schichtPin = [32,33,25,27,26,12]

L=len(schichtPin)

schicht=[0]*L

http://www.grzesina.de/az/weihnachtsbaum/alarm.py

for i in range(L):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

Funktionen defnieren ***********************************

def TimeOut(t):

 start=ticks_ms()

 def compare():

 return int(ticks_ms()-start) >= t

 return compare

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.clearAll()

 d.writeAt("ALLES GUT",4,2)

 for i in range(L):

 switch(i,0)

def alle():

 d.clearAll()

 d.writeAt("DIEBSTAHL",0,0)

 for i in range(L):

 sleep(0.5)

 switch(i,1)

def hasMoved(delay):

 xs,ys,zs=0,0,0

 for i in range(100):

 x,y,z=acc.getXYZ()

 xs+=x

 ys+=y

 zs+=z

 xs//=100

 ys//=100

 zs//=100

 #print(xs,ys,zs)

 n=0

 while 1:

 x,y,z=acc.getXYZ()

 x=abs(xs-x)

 y=abs(ys-y)

 z=abs(zs-z)

 #print(x,xs//limit)

 if x > abs(xs//limit) :

 print("*******",n)

 n+=1

 alle()

 # Optional Nachricht via UDP

 AT.init(period=delay, mode=Timer.ONE_SHOT,\

 callback=alertDone)

 sleep(0.3)

def alertDone(t):

 stop()

print("Diebstahlschutz gestartet")

hasMoved(dauer)

Again there are good friends in the program. What is new, however, is the
initialization of the GY521. For the block we have to upload another module to the
ESP32, gy521rc.py. The class it contains has the same name as the module.

Like the OLED display, the GY521 is also operated via the I2C bus. We pass the
same I2C object to the constructor, define the threshold for triggering the alarm and
its duration in milliseconds.

The threshold is the absolute amount of deviation of the measured value from the
mean value of the acceleration measurement in the x-direction. The sensor is aligned
so that the positive x-axis points vertically upwards. The measured value is around
16000 counts and in this case corresponds to the acceleration due to gravity g =
9.81m / s².

The hasMoved () function represents the main loop here. When entering, the mean
value is determined by 100 measurements. It goes without saying that the sensor
must not move.

Then it goes into the main loop. the current acceleration is measured and the
deviations from the mean values are calculated. If the difference exceeds the
specified limit, an alarm is triggered and the timer is activated. The alarm means that
the tree goes to full brightness.

The service routine of the timer IRQ extinguishes the lights. The solution via the IRQ
ensures that the circuit is armed again immediately after the alarm is triggered. If the
alarm duration were specified by a sleep command in the main loop, the circuit would
be dead for this duration.

The vibrating contacts mentioned in the parts list would be connected to the ESP32
in a similar way to the reed contact, but would not allow the sensitivity to be set.

10. ESP32 and DHT22 wish you a pleasant stay

A pleasant room climate is part of the festive mood. Now the ESP32 cannot change
the room climate in this simple application, but it can report about it. The exact values
for temperature and humidity are shown on the OLED display; the tree tells us the
rough values. In 2-degree steps, it reports the values of the room temperature
through a different number of switched-on LED levels.

Abbildung 14: Temperatur- und Luftfeuchtemessung in einem Modul

There are 2 variants of DHT22, alias AM2302. The module in the illustration on the
left already contains the necessary pull-up resistor for the one-wire bus, which, by the
way, must not be confused with the system of the Dallas module DS18B20. The
Dallas bus has a completely different timing. For the bare version in the right figure, a
4.7kΩ to 10kΩ resistor to Vcc must be built in.

The operation in the program is very easy. The dht module, which is already
integrated in MicroPython, provides the three necessary commands.

roomclimate.py
roomclimate.py

import esp32, dht

from os import uname

import sys

from machine import Pin, I2C

from oled import OLED

from time import sleep

Initialisieren der Schnittstellen **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

dhtPin=Pin(13)

dht22=dht.DHT22(dhtPin)

LED-Schichten einrichten *******************************

schichtPin = [32,33,25,26,27,12]

schicht=[0]*6

for i in range(6):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

Funktionen defnieren ***********************************

http://www.grzesina.de/az/weihnachtsbaum/roomclimate.py

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.writeAt("TEMP TO LOW",4,2)

 for i in range(6):

 switch(i,0)

def alle():

 for i in range(6):

 sleep_ms(300)

 switch(i,1)

def tree(n):

 for i in range(6):

 if i <=n:

 switch(i,1)

 else:

 switch(i,0)

Hauptprogramm **

d.clearAll()

d.writeAt("***RAUMKLIMA***",0,0)

while True:

 sleep(0.3)

 dht22.measure()

 t=dht22.temperature()

 h=dht22.humidity()

 d.rect(0,10,126,38,1)

 d.clearFT(1,2,14,3)

 d.writeAt("TEMP: {:.1f} *C".format(t),1,2)

 d.writeAt("HUM : {:.1f} %".format(h),1,3)

 tree(int(((t-15)//2)%6))

 sleep(2.7)

In addition to the usual suspects, the program only offers the import of the dht
module, the instantiation of the dht22 object and the main loop with the measurement
job dht22.measure () and the reading in of temperature and humidity values. We
already know the output on the display and the tree display. The conversion of the
temperature from ° C to the index of the lighting level is perhaps interesting and
inconspicuous. by the term int (((t-15) // 2)% 6). From the quotient value of the integer
division of the deviation of the temperature from 15 ° C upwards and 2, the 6-part
remainder is determined and, to be on the safe side, represented as an integer.
Again very slowly.

Example: t = 18 ° C
18-15 = 3
3 // 2 = 1
1% 6 = 1 i.e. level index 1

for 28 ° C the result would be: 28-15 = 13; 13 // 2 = 6; 6% 6 = 0; The last step is
necessary because there is no stage number 6.

11. The (slightly different) Christmas raffle

I know that from my school days. Everyone brought a parcel with them during Advent
and the week before the outdoors the raffle started - every ticket wins.

I have chosen neutral RFID cards as the recyclable lots. The ESP32 and the RFID kit
take care of the drawing. You only have to take care of the profits yourself. Of course,
the tree is also there. With its luminosity, it announces its win to the respective player.
So that there are no doubts about the interpretation, the display clearly names the
location of each drawing: Freiburg, Berlin, Hamburg…. Six lottery tickets and one
master card are required.

Abbildung 15: RFID-Karten-Leser

With the SPI bus, the wiring is a little more complex than with the I2C bus with its 2
lines. SPI bus devices do not have a hardware device address, instead they have a
chip select connection that must be LOW if the device is to be addressed. The data
transfer is also a little different, it is always sent and received at the same time. It is
not necessary to clarify the more detailed procedure here, because the MFRC522
class does it for us. We only inform the constructor of the pin assignments and the
transmission speed. The transfer works at a brisk 3.2MHz. For comparison, I2C
works at 400kHz.

The readUID () function reads out the unique ID of the card and returns it as a
hexadecimal value and as a decimal number. The cards are requested via the OLED
display. A timeout ensures an orderly withdrawal so that the function does not block
the entire process. In this case, the value None is returned instead of the card ID.

Abbildung 16: RFID-Karten und Chip

In order for the ticket cards to come into play, we need a master card. To do this, we
take any card or chip from the stack, read the ID and assign the decimal value to the
variable at the beginning of the program:
MasterID = 4217116188.

When the ESP32 is started for the first time, it detects that there is not yet a file with
the batch card data and requests the master card. After this has been recognized, a
ticket will be requested. After reading out the ID, it is written to the file and the master
card is requested again. Reading is continued until the last ticket card. If no ticket is
offered for 10 seconds after the master card has been requested, the system restarts
itself. The prerequisite for this is that the rfid.py program has been sent to the ESP32
as boot.py. Chapter 2 - Autostart explains exactly how to do this. To start from
scratch, we can delete the slavecards.txt file with the ticket IDs via the Thonny
console. After a reset, the ticket cards can then be read in again.

rfid.py
rfid.py

workes with RC522 13,2MHz

import mfrc522

import esp32, dht

from os import uname

from machine import Timer, Pin, I2C, ADC, reset

from oled import OLED

from time import sleep,ticks_ms, ticks_us, sleep_ms

from gy521 import GY521

Initialisieren der Schnittstellen **********************

if uname()[0] == 'esp32':

 # sck, mosi, miso, cs=sda

 rdr = mfrc522.MFRC522(14, 16, 15, 5,

baudrate=3200000)

elif uname()[0] == 'esp8266':

 # sck, mosi, miso, cs=sda

 # D3 D4 D2 D5

http://www.grzesina.de/az/weihnachtsbaum/rfid.py

 rdr = mfrc522.MFRC522(0, 2, 4, 14,

baudrate=100000)

else:

 raise RuntimeError("Unsupported platform")

MasterID=4217116188 # 0XFB5C161C

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

schichtPin = [32,33,25,27,26,12]

schicht=[0]*6

for i in range(6):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

gewinn=[

 "Freiburg",

 "Berlin",

 "Hamburg",

 "Augsburg",

 "Ratzeburg",

 "Erfurt",

 "Essen",

 "Bonn",

]

Funktionen defnieren ***********************************

def TimeOut(t):

 start=ticks_ms()

 def compare():

 return int(ticks_ms()-start) >= t

 return compare

def readUID(display,kartentyp,timeout):

 display.clearFT(0,1,15,show=False)

 display.writeAt("Put on "+kartentyp,0,1)

 readTimeOut=TimeOut(timeout)

 while not readTimeOut():

 (stat, tag_type) = rdr.request(rdr.REQIDL)

 if stat == rdr.OK:

 (stat, raw_uid) = rdr.anticoll()

 if stat == rdr.OK:

 display.clearFT(0,2,15,show=False)

 display.writeAt("Card OK",0,2)

 sleep(1)

 userID=0

 for i in range(4):

 userID=(userID<<8) | raw_uid[i]

 userIDS="{:#X}".format(userID)

 print(userIDS)

 return userID,userIDS

 return None

def addUID(display):

 display.clearAll()

 m=readUID(display,"Master",3000)

 if m is not None:

 mid,_= m

 if mid==MasterID:

 sleep(3)

 u=readUID(display,"Slavecard",3000)

 if u is not None:

 uid,uids=u

 if uid is not None and uid != MasterID:

 with open("slavecards.txt","a") as f:

 f.write("{}\n".format(uids))

 display.writeAt("New slave

written",0,3)

 sleep(3)

 return True

 else:

 display.writeAt("ERROR!!!",0,3)

 display.writeAt("Card not added!",0,4)

 return False

 else:

 display.writeAt("ERROR!!!",0,3)

 display.writeAt("Not mastercard",0,4)

 sleep(3)

 return False

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.writeAt("GOOD BYE",4,2)

 for i in range(6):

 switch(i,0)

def alle():

 for i in range(6):

 sleep_ms(300)

 switch(i,1)

def tree(n):

 for i in range(6):

 if i <=n:

 switch(i,1)

 else:

 switch(i,0)

******************* Hauptprogramm *********************

d.clearAll()

d.writeAt("*XMAS LOTTERIE*",0,0)

d.rect(0,20,127,28,1)

cards=[]

try:

 with open("slavecards.txt","r") as f:

 for line in f:

 cards.append(line.strip("\n"))

 closed=TimeOut(60000)

 while not closed():

 u=readUID(d,"LOSKARTE",5000)

 d.clearFT(1,3,14,4,False)

 if u is not None:

 uid,uids=u

 try:

 n=cards.index(uids)

 d.writeAt("TREFFER {}".format(n),1,3, False)

 d.writeAt(gewinn[n],1,4)

 except ValueError as e:

 d.writeAt("TROSTPREIS",1,3)

 n=-1

 tree(n)

 closed=TimeOut(60000)

 sleep(10)

 stop()

except OSError as e:

 print("keine Datei, keine Daten!")

 allRead=TimeOut(10000)

 while not allRead():

 if addUID(d):

 allRead=TimeOut(10000)

 print("Alle Karten eingelesen und gespeichert")

 d.clearFT(0,3,15,4,False)

 d.writeAt(" ALL CARDS READ",0,3)

 d.writeAt("**R E B O O T**",0,4)

 reset()

d.clearFT(0,1,15,3,False)

d.writeAt("Lotterie neu",0,2)

d.writeAt("starten",0,3)

For a game cycle, 6 wins are determined, the 6 cards are shuffled and distributed
and the new round is started with the PROG button on the ESP32.

12. The tree in the LAN / WLAN

Let's fill up the dozen and connect the sapling to the network. Because if an ESP32 is
already being used for control, then LAN or WLAN access to the control must also be
provided. I decided to implement a web server on the ESP32 because the levels of
the tree can then be controlled with almost any browser. An alternative would be a
UDP server on the controller and a mobile phone app. But that would have gone
beyond the scope of this blog and that's why I refrained from it. For those interested, I
have already described this type of control in other posts, for example here and here.

For the circuit, the structure of Chapter 5 is needed, which we are expanding with an
RGB LED and three 1.0 kΩ resistors.

http://www.grzesina.de/az/gelsenschreck/mueckenstopp_eng.pdf
http://www.grzesina.de/az/gelsenschreck/mueckenschreck_handyapp_eng.pdf

Abbildung 17: Web-Aufbau

After importing the necessary modules, we define the pins for the RGB LED, which
visibly tells us the network status from a long distance. This is followed by the
selection of the network operating mode, WLAN or ESP32's own access point.
WLAN is preset by default. In order to access the WLAN router, the access data must
then also be entered here. The layer definition is extended by three lists, plain text for
on / off, background color for the table in the website and the switching states of the
levels.

The blocking functions have been removed, swell (), swell (), wave () and tree ().
HexMac (), blink (), ledsOff () and web_page () have been added. hexMac outputs
the MAC address of the ESP32 in station mode, blink () signals the network and
server status. With ledsOff () the RGB-LED is switched off and web_page () picks up
requests from the browser, executes the orders and returns a response as website
text.

The browser's request is sent to the server as a query string. The string has the
form? A,? P or? E = x & v = y. Here x stands for the level number and y for the
switching state, 0 or 1.

web_page () converts the query to capital letters and first checks for "A" and "P". If
the request contains more than 2 characters, an attempt is made to determine the
level and the switching status. If an error occurs, no action is triggered and the bare
start page is called. This also happens if no query string has been specified. The
website is then set up as a string and returned to the main loop.

After the function definitions, the network connection is established, either as a
separate access point or as a connection to the WLAN router. This is controlled by
the two variables ownAP and WLANconnect. In both cases, a fixed IP address
(10.0.1.181) is assigned because it is a server. Dynamic addresses from the WLAN
router are unsuitable as they can change from time to time. The connection
establishment to the router is indicated by the blinking of the blue LED. The display
informs us when the connection is established and the connection socket s is also
ready to accept requests.

In the main loop, the receive loop of the accept () method waits for a request. If
nothing arrives by the timeout, accept () throws an exception, which we catch with the
preceding try.

If there is a request, accept () returns a communication socket c and the address of
the requesting machine. c is used to handle the data exchange between client and
server, while s becomes free again to accept further incoming requests. The method
c.recv () returns the text of the request, of which we are only interested in the first few
characters. In the development phase you can enter queries by hand to test the
web_page () parser. ownAP and WLANconnect must then both be set to False.

The byte object request of the received text is now decoded into a string r, which is
easier to handle. We are looking for a "GET /" at the very beginning of the string r
and for the position followed by "HTTP". If both are found, we isolate the text after the
"/" of "GET" up to the space in "HTML" and send it as a query string to the parser
web_page (). We receive its response in the variable response. Then we send the
HTML header and the text of the HTML page with the contained answer back to the
caller. The following two else and the except are used to catch and handle possible
errors. The final c.close (), which closes the communication socket c, is important.

After a button query to abort the program, the green LED flashes briefly as a
heartbeat to indicate that the system is still alive.

webcontrol.py
webcontrol.py

Fernsteuerung vom Browser via TCP

(C) 2021 Jürgen Grzesina

released under MIT-License (MIT)

http://www.grzesina.de/az/weihnachtsbaum/MIT-License.txt

from machine import Pin, I2C

from oled import OLED

******************** Network stuff ********************

from time import sleep,ticks_ms, sleep_ms

try:

 import usocket as socket

except:

 import socket

import ubinascii

import network

http://www.grzesina.de/az/weihnachtsbaum/webcontrol.py

statusLed=Pin(18,Pin.OUT,value=0) # blau=2

onairLed=Pin(19,Pin.OUT,value=0) # gruen=1

errorLed=Pin(23,Pin.OUT,value=0) # rot=0

led=[errorLed,onairLed,statusLed]

red,green,blue=0,1,2

request = bytearray(50)

response=""

taste=Pin(0,Pin.IN,Pin.PULL_UP)

Auswahl der Betriebsart Netzwerk oder Tastatur:

--

Netzwerk: Setzen Sie genau !_EINE_! Variable auf True

WLANconnect=True # Netzanbindung ueber lokales WLAN

ownAP=False # Netzanbindung ueber eigenen Accessppoint

beide False ->> Befehlseingabe ueber PC + USB in Testphase

Falls WLANconnect=True:

Geben Sie hier die Credentials Ihres WLAN-Accesspoints an

mySid = 'beteigeuze'; myPass = "4u2getACCess2theweb"

#mySid = 'YOUR_SSID'; myPass = "YOUR_PASSWORD"

myIP="10.0.1.181"

myPort=9002

Initialisieren der Schnittstellen **********************

i2c=I2C(-1,scl=Pin(22),sda=Pin(21))

d=OLED(i2c)

#schichtPin = [32,33,25,27,26,12] # sortiert

schichtPin = [32,26,33,27,25,12] # verteilt

schicht=[0]*6

for i in range(6):

 schicht[i]=Pin(schichtPin[i],Pin.OUT)

 schicht[i].value(0)

zustand=["aus","an "]

color=["red","lightgreen"]

eState=[0,0,0,0,0,0]

connectStatus = {

 1000: "STAT_IDLE",

 1001: "STAT_CONNECTING",

 1010: "STAT_GOT_IP",

 202: "STAT_WRONG_PASSWORD",

 201: "NO AP FOUND",

 5: "GOT_IP"

 }

Funktionen defnieren ***********************************

def TimeOut(t):

 start=ticks_ms()

 def compare():

 return int(ticks_ms()-start) >= t

 return compare

def switch(n,val):

 schicht[n].value(val)

def stop():

 d.writeAt("ALL LEDS OFF",2,5)

 for i in range(6):

 switch(i,0)

def alle():

 d.writeAt("ALL LEDS ON ",2,5)

 for i in range(6):

 sleep_ms(300)

 switch(i,1)

def tree(n):

 d.writeAt("TREE PROGR. ",2,5)

 for i in range(6):

 if i <=n:

 switch(i,1)

 else:

 switch(i,0)

def hexMac(byteMac):

 """

 Die Funktion hexMAC nimmt die MAC-Adresse im Bytecode

 entgegen und bildet daraus einen String fuer die Rueckgabe

 """

 macString =""

 for i in range(0,len(byteMac)): # Fuer alle Bytewerte

 macString += hex(byteMac[i])[2:] # ab Position 2 bis Ende

 if i <len(byteMac)-1 : # Trennzeichen

 macString +="-"

 return macString

def blink(pulse,wait,col,inverted=False):

 if inverted:

 led[col].off()

 sleep(pulse)

 led[col].on()

 sleep(wait)

 else:

 led[col].on()

 sleep(pulse)

 led[col].off()

 sleep(wait)

def ledsOff():

 for i in range(3):

 led[i].value(0)

def web_page(q):

 global eState

 q=q.upper()

 print("Anfrage: ",q)

 if q=="?A":

 alle()

 for i in range(6):

 eState[i]=1

 elif q=="?P":

 stop()

 for i in range(6):

 eState[i]=0

 elif len(q)>2:

 try:

 ebene,state=q[1:].split("&")

 _,ebene= ebene.split("=")

 _,state= state.split("=")

 ebene=(int(ebene) if 0<=int(ebene)<=5 else 0)

 state=(int(state) if 0<=int(state)<=1 else 0)

 switch(ebene,state)

 eState[ebene]=state

 except:

 pass

 else:

 pass

 antwort="<tr>"

 for i in range(6):

 h="<td bgcolor={}><H3>E{}

{}.</H3></td>".format(color[eState[i]],i, zustand[eState[i]])

 antwort=antwort+h

 antwort=antwort+"</tr>"

 html1 = """<html>

 <head>

 <meta name="viewport" content="width=device-width,

initial-scale=1">

 </head>

 <body>

 <h2>Hallo,
ich bin dein

Weihnachtsbäumchen</h2>"""

 html2="""<table border=2 cellspacing=2>

 """

 html3="""

 <tr>

 <td>

 <H3>E0 An </H3>

 </td>

 <td>

 <H3>E1 An </H3>

 </td>

 <td>

 <H3>E2 An </H3>

 </td>

 <td>

 <H3>E3 An </H3>

 </td>

 <td>

 <H3>E4 An </H3>

 </td>

 <td>

 <H3>E5 An </H3>

 </td>

 <td>

 <H3>ALLE AN </H3>

 </td>

 </tr>

 <tr>

 <td>

 <H3>E0 Aus</H3>

 </td>

 <td>

 <H3>E1 Aus</H3>

 </td>

 <td>

 <H3>E2 Aus</H3>

 </td>

 <td>

 <H3>E3 Aus</H3>

 </td>

 <td>

 <H3>E4 Aus</H3>

 </td>

 <td>

 <H3>E5 Aus</H3>

 </td>

 <td>

 <H3>ALLE AUS</H3>

 </td>

 </tr>

 """

 html9 = "</table> </body> </html>"

 html=html1+html2+antwort+html3+html9

 return html

if taste.value()==0:

 print("Mit Flashtaste abgebrochen")

 ledsOff()

 d.writeAt("Abbruch d. User ",0,5)

 sys.exit()

**

Netzwerk einrichten

**

Eigener ACCESSPOINT

**

if ownAP and (not WLANconnect):

 #

 nic = network.WLAN(network.AP_IF)

 nic.active(True)

 ssid="christbaum"

 passwd="don't_care"

 # Start als Accesspoint

 nic.ifconfig((myIP,"255.255.255.0",myIP,\

 myIP))

 print(nic.ifconfig())

 # Authentifizierungsmodi ausser 0 werden nicht

unterstuetzt

 nic.config(authmode=0)

 MAC=nic.config("mac") # liefert ein Bytes-Objekt

 # umwandeln in zweistellige Hexzahlen

 MAC=ubinascii.hexlify(MAC,"-").decode("utf-8")

 print(MAC)

 nic.config(essid=ssid, password=passwd)

 while not nic.active():

 print(".",end="")

 sleep(0.5)

 print("Unit1 listening")

*************** Setup accesspoint end *****************

**

WLAN-Connection

**

if WLANconnect and (not ownAP):

 nic = network.WLAN(network.STA_IF) # erzeuge WiFi-Objekt

 nic.active(True) # Objekt nic einschalten

 #

 MAC = nic.config('mac') # binaere MAC-Adresse abrufen +

 myMac=hexMac(MAC) # in Hexziffernfolge umwandeln

 print("STATION MAC: \t"+myMac+"\n") # ausgeben

 # Verbindung mit AP im lokalen Netzwerk aufnehmen,

 # falls noch nicht verbunden, dann

 # connect to LAN-AP

 if not nic.isconnected():

 nic.connect(mySid, myPass)

 # warten bis die Verbindung zum Accesspoint steht

 print("connection status: ", nic.isconnected())

 while not nic.isconnected():

 blink(0.8,0.2,0)

 print("{}.".format(nic.status()),end='')

 sleep(1)

 # zeige Verbindungsstatus & Config-Daten

 print("\nconnected: ",nic.isconnected())

 print("\nVerbindungsstatus: ",connectStatus[nic.status()])

 print("Weise neue IP zu:",myIP)

 nic.ifconfig((myIP,"255.255.255.0",myIP, \

 myIP))

 STAconf = nic.ifconfig()

 print("STA-IP:\t\t",STAconf[0],"\nSTA-NETMASK:\t",\

 STAconf[1],"\nSTA-GATEWAY:\t",STAconf[2] ,sep='')

*********** Setup Router connection end ***************

**

TCP-Web-Server

**

----------------- Server starten --------------------------

if WLANconnect or ownAP:

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)

 s.bind(('', myPort))

 print("Socket established, waiting on port",myPort)

 d.clearAll()

 # 0123456789012345

 d.writeAt("SOCK ESTABLISHED",0,0)

 d.writeAt("LISTENING AT",0,1)

 d.writeAt(myIP+":"+str(myPort),0,2)

 s.settimeout(0.9)

 s.listen(2)

if taste.value()==0:

 print("Mit Flashtaste abgebrochen")

 ledsOff()

 d.writeAt("Abbruch d. User ",0,5)

 sys.exit()

------------------- Serverschleife ----------------------

while True:

 try: # wegen timeout

 r=""

 if WLANconnect or ownAP:

 c, addr = s.accept()

 print('Got a connection from {}:{}\n'.\

 format(addr[0],addr[1]))

 request=c.recv(1024)

 else:

 request=input("Kommando:")

 addr="999.999.999.999:99999"

 try: # decodieren und parsen

 r=request.decode("utf8")

 getPos=r.find("GET /")

 if r.find("favicon")==-1:

 print("***********************************")

 print("Position:",getPos)

 print("Request:")

 print(r)

 print("***********************************")

 pos=r.find(" HTTP")

 if getPos == 0 and pos != -1:

 query=r[5:pos] # nach ? bis HTTP

 print("*********QUERY:{}*********\n\n".\

 format(query))

 response = web_page(query)

 print("---------------\n",response,\

 "\n----------------")

 c.send('HTTP/1.1 200 OK\n'.encode())

 c.send('Content-Type: text/html\n'\

 .encode())

 c.send('Connection: close\n\n'.encode())

 c.sendall(response.encode())

 else:

 print("##########\nNOT HTTP\n###########")

 c.send('HTTP/1.1 400 bad request\n'\

 .encode())

 else:

 print("favicon request found")

 c.send('HTTP/1.1 200 OK\n'.encode())

 except: # decodieren und parsen

 request = rawRequest

 c.send('HTTP/1.1 200 OK\n'.encode())

 c.close()

 except: # wegen timeout

 pass

 if taste.value()==0:

 print("Mit Flashtaste abgebrochen")

 ledsOff()

 d.writeAt("Abbruch d. User ",0,5)

 sys.exit()

 blink(0.05,0.05,1)

Abbildung 18: Live aus dem Browser

This is what the website looks like in reality on Google Chrome. Opera offers a
similar picture after entering the URL 10.0.1.181:9002. Firefox makes bitches
because the makers have made it into their head to have to tame users by making
their browser only accept https addresses. But there are alternatives. If things get
really bad, you could even write your own front end for the PC with CPython.

Well, I think by Christmas you will have enough to do with the sapling projects. There
is sure to be one or the other for everyone. It is important that you enjoy the
implementation and that I was able to arouse your interest. In any case, I wish you a
nice Advent season.

