£

- ¥ . ™
| - ot oo’ .

Enter number
7 plavers 1 to =
e v 3o 3o 2o J

Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

In the first post in this series, | introduced a game that involves guessing four colors. The
lean equipment got by with a two-line LCD keypad, in which the display and a few buttons
were combined on one board. Several players require more space in the display unit.
When choosing a multi-line display, | opted for a 6-line OLED display for reasons of space.
But now a replacement also had to be found for the keyboard. My choice fell on a 4x4
keyboard matrix with ten digit and six special keys. | had already created a MicroPython
module for this keypad in another project.

The object of the game is still to guess four colors with as few passes as possible.
Strategy is required. Unlike its predecessor, this version is designed for several players,
the number of which must be specified at the start. The maximum number of players
depends only on the memory of the ESP32 and can be found out with TRYAL AND
ERROR and "Jugend forscht". The display can handle up to four players in this expansion
stage.

The use of hardware is very similar to that in the blogs about the use of SMS and
telephony with the ESP32. But we don't need any radio links. Sensors are also not
required. Look forward to the use of the OLED display and keyboard matrix. So welcome
to

http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_eng.pdf
http://www.grzesina.de/az/gps/teil5/gps_mcp_teil5_eng.pdf

Ring Master 2 + Codenumber
Games with the ESP32 in MicroPython

The LCD keypad from other blog episodes is replaced here by an OLED display. It offers
six lines of 16 characters each and is also capable of graphics with 128 by 64
monochrome pixels. As with the LCD keypad, it is controlled serially via the 12C bus. By
proactively programming the driver module, the oled.OLED class offers the same API as
the Icd.LCD class. You don't have to get used to new commands or rewrite the program
when the display is swapped.

In this episode, the game is controlled using a 16-key keypad. | will discuss the underlying
functionality in detail below.

Because the "emergency brake" is no longer available on the LCD keypad, key A on the
keypad was used at certain points in the program. Of course, you can also add a single
normal key for this function. Such an emergency brake fulfills a very useful task in program
development in structures such as the main loop.

All objects, variable contents and function definitions created up to the point of cancellation
are retained for manual access via REPL, the MicroPython command line. In this way, for
example, functions and program parts can be tested without having to re-enter a whole
series of imports and declarations, etc. each time. The fact that such tests can be carried
out easily via the REPL command line is a decisive advantage of the MicroPython
environment compared to the Arduino IDE.

Hardware

A MicroPython program is created for "Ring Master". That means we need a MicroPython-
capable controller. The choice fell on an ESP32, because it should not be a large screen
like the Raspi, but only an OLED display and a neopixel ring. The ESP8266-12F is
eliminated because of insufficient RAM memory and GPIO connections, it lacks a good
1200 bytes. The display is operated via an 12C connection. The serial-parallel converter
used for the LCD keypad is not required because the OLED display itself has an 12C
adapter. There is a built-in module in the MicroPython firmware for the neopixel ring, which
makes programming child's play. A few comments on the function of the ring follow below.
Its current consumption is around 20mA.

ESP32 NodeMCU Module WLAN WiFi Development Board mit CP2102 oder &hnlich
LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen

0,96 Zoll OLED 12C Display 128 x 64 Pixel - 1x OLED

4x4 Matrix Keypad Tastatur - 1x Keypad

MCP23017 Serielles Interface Modul

Battery Expansion Shield 18650 V3 inkl. USB Kabel

Li-Akku Typ 18650

LED Ring 5V RGB WS2812B 12-Bit 37mm oder ahnlich

RiRRRRR R

https://www.az-delivery.de/products/esp32-developmentboard?_pos=3&_sid=854ce9b38&_ss=r
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/0-96zolldisplay?variant=26462805705
https://www.az-delivery.de/products/4x4-matrix-numpad?variant=12239800074336
https://www.az-delivery.de/products/mcp23017-serielles-interface-modul?variant=32344272568416
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/rgb-led-ring-ws2812-mit-12-rgb-leds-5v-fuer-arduino?variant=18912609108064

The circuit for "Ring Master 2" is largely taken from the fifth episode of the GPS blog
"Telephony”. If you want to use a 5V power supply instead of the battery holder and the Li
battery, you have to connect the 5V to pin 20, Vin, of the ESP32. The 3.3V pin of the
ESP32 then supplies the 12C parallel converter for the keyboard

CcLK 1 BE Vin
sbo ” EkR CMD
SD1 IR SD3

TP3 ADC2-3 G15 4 [€H SD2

TP2 ADC2-2 G2 - [Eh G13 ADC2-4 TP4

TP4 ADC2-1 GO © B8 GND

TPO ADC2-0 G4 7 [BEN G12 ADC2-5 TP5
G16 5[EH G14 ADC2-6 TP6
G17 < 8 G27 ADC2-7 TP7
G5 10 B G26 ADC2-9
G18 11 B8 G25 ADC2-8
G19 12) G33 ADC1-5 TP8
GND 12 @B G32 ADC1-4 TP9
G21 1§ G35 ADC1-7
RXD 18 G34 ADC1-6
TXD 16 & SN/G39 ADC1-3
G22 17 B8 SP/G36 ADC1-0
G23 g EN/RST
GND 19 [&F] AR 5 3v3

* ..b

The supply from a 4.5V block of alkaline cells can also be used, but you should then derive
your own 3.3V supply for the neopixel ring. The 3.3V output of the ESP32 doesn't do all of
that. An AMS1117 3.3V power supply module for Raspberry Pi can be used as a
component. An extra 5V regulator must be used for supply voltages above 5V, because
the neopixel ring must not receive more than 5.3V. By the way, old PC power supplies are
very suitable for experimenting because they provide 3.3V and 12V in addition to 5V. This
means that even hungry power guzzlers can be satisfied.

The following figure shows the circuit diagram. You can download a more readable copy in
DIN A4 as a PDF file.

http://www.grzesina.de/az/gps/teil5/gps_mcp_teil5_ger.pdf
http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf

Ring Master 2
Autor: Jurgen Grzesina

SDA
SCL

¢A 0S98L:

3,3V

QN9 JAS

IA7—R3
tAG——R2
tAS—R1
A9——S3
At——S1
A0 SO
ITA

GND

(]

=l
> =1 AG

10K
 Ep—

10k

o J

The keyboard is connected in such a way that lines of the same color (or lines of the same
name) meet those of the MCP23017. So that you can do this with jumper cables, the
keyboard board must be provided with an 8-pin (angled) pin header. The two outermost
solder pins remain unconnected. The module with the MCP23017 also has two connector
strips, namely the two outer rows with the pins up towards the component side, the inner
row has a pin or socket strip downwards. If the circuit board is now plugged into a
breadboard, the labeled side of the board points upwards, which makes wiring much
easier.

BL/f
B4/A

(#°SCL/SCK BS/A

| 45 RESET
;! 'I- NC/S0

2 B0A/SI

http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf

12 Neopixel LEDs of type WS2812B are installed on the LED ring. Power is supplied in
parallel. The data line runs serially from one LED unit to the next and represents a special
type of bus. Each unit contains an RGB LED and a controller that reacts to the first
incoming 24-bit sequence of color information. The signals, with the same period but
different duty cycles, are generated by a microcontroller such as the ESP32. 24 bits are
generated for each neopixel unit (8 each for green, red and blue). The period for one bit is
1.25ps +/- 0.150ps, the transmission frequency is thus approx. 800kHz. For a 1 the line is
0.8us on HIGH and 0.45us on LOW, a 0 is coded with 0.4us HIGH and 0.85us LOW. The
first incoming 24 bits are processed by each WS2812B unit without passing them on. All
those who follow are reinforced and passed on to the next unit. The signal sequence from
the microcontroller is therefore 24 bits shorter from LED to LED. In contrast to a
conventional data bus, the WS2812B units do not receive the data at the same time, but
with a time delay of 24 bits times 1.25 us / bit = 30 ps.

A frame buffer in the RAM of the ESP32 temporarily stores the color values (3 x 256 =
16.7 million), and the NeoPixel.write () command sends the information over the "bus" that
is attached to a GPIO output (in our case GPIO13). Several rings can be cascaded just
like individual LEDs by connecting the input of the next ring to the output of the previous
one. The connections are made on the back, ideally using thin strands. To protect the
eyes, | use a maximum brightness level of 32. The total current consumption of the ring is
less than 20mA on average. The easiest way to determine the components for the mixed
colors is by experiment using REPL. The brightness of the individual sub-LEDs of a unit is
quite different. The RGB color codes in the tuples will therefore rarely have the same value
for the mixed colors.

>>> from neopixel import NeoPixel
>>> neoPin=Pin(13)

>>> neoCnt=12

>>> np=NeoPixel(neoPin,neoCnt)
>>>np[0]=(32,16,0)

>>> np.write()

For comparison, the last two commands are repeated with a different RGB code until the
color rendering is correct. The values given here produce yellow as a mixed color of red
and green.

At full luminosity, the LED units suck 50mA each, which requires a good constant voltage
source and cooling of the ring.

Die Software

Verwendete Software:
Furs Flashen und die Programmierung des ESP32:

Thonny oder
uPyCraft

Verwendete Firmware:
MicropythonFirmware
Bitte eine Stable-Version aussuchen

MicroPython-Module und Programme
keypad.py Modul fur Tastenfeld-Unterstiitzung

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/spiele/ringmaster2/keypad.py

mcp.py Modul fir Porterweiterungsbaustein MCP23017
i2cbus.py zum Austausch verschiedener Datentypen
oled.py die API zur Ansteuerung des OLED-Moduls
ssd1306.py der Hardwaretreiber fur das Display
ringmaster2.py Hauptprogramm

You can find detailed instructions for installing Thonny here. There is also a description of
how the Micropython firmware is burned to the ESP32.

Tricks and Infos on MicroPython

MicroPython is an interpreter language. The main difference to the Arduino IDE, where
you always and exclusively flash entire programs, is that you only have to flash the
MicroPython firmware once at the beginning on the ESP32 before the controller
understands MicroPython instructions. You can use Thonny, uPyCraft or esptool.py for
this. | have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first having
to compile and transfer an entire program. This is exactly what bothers me about the
Arduino IDE. You simply save an enormous amount of time if you can do simple tests of
the syntax and hardware through to trying out and refining functions and entire program
parts via the command line before you knit a program out of it. For this purpose | also like
to create small test programs over and over again. As a kind of macro, they combine
recurring commands. From such program fragments, entire applications can develop. If
the program is to start autonomously when the controller is switched on, copy the program
text into a newly created blank file. Save this file as boot.py in the workspace and upload it
to the ESP32. The program starts automatically the next time it is reset or switched on.

Programs are started manually from the current editor window in the Thonny IDE using the
F5 key. This is faster than clicking the start button or using the Run menu. Only the
modules used in the program must be in the flash of the ESP32.

If you want to use the controller again later together with the Arduino IDE, simply flash the
program in the usual way. However, the ESP32 / ESP8266 then forgot that it ever spoke
MicroPython. Conversely, any Espressif chip that contains a compiled program from the
Arduino IDE or the AT firmware or LUA can easily be provided with the MicroPython
firmware. The process is always as described here.

| explained the data structures used in the program for color management in detail in the
previous article, Ringmaster 1. How the query of the keyboard matrix works with the help
of the keypad.py module is shown here for two different approaches. In addition to the
information on the connection options, you will also find a detailed description of the
classes contained in the module.

Just briefly about the OLED display. The OLED class provides the same API as the LCD
class and allows line specifications beyond 0 and 1, depending on the hardware used.
This means that an OLED display can replace an LCD at any time. The reverse is only
possible if lines 0 and 1 are used in the program and no graphic functions are used.

http://www.grzesina.de/az/spiele/ringmaster2/mcp.py
http://www.grzesina.de/az/spiele/ringmaster2/i2cbus.py
http://www.grzesina.de/az/spiele/ringmaster2/oled.py
http://www.grzesina.de/az/spiele/ringmaster2/ssd1306.py
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2.py
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen
http://www.grzesina.de/az/spiele/masterring/masterring_eng.pdf
http://www.grzesina.de/az/das_modul_keypad.html

So that the ringmaster2.py program can be executed, all modules listed above must be
uploaded to the ESP32's flash memory. These are the files ssd1306.py, i2cbus.py,
oled.py, keypad.py and mcp.py. When this is done, we can start the program
ringmaster2.py in the editor window with F5 - provided the hardware is assembled and the
ESP32 is connected to the PC.

Here follows the listing of the program ringmaster2.py.

sl=sorted(score.items (), key=lambda x: x[1])
for i in range (nbrOfPlayers) :
disp.writeAt ("Player{}:{};".format (s1[1i][0],\
s1[1]1[1],0,1+1))
taste=k.waitForKey (0,ascii=True)
if taste=="\x08":
print ("Game Over")
disp.clearAll ()
disp.writeAt (" GAME OVER",0,0)
sys.exit ()
sleep (0.8)

The main program is relatively manageable due to the relocation of the subtasks to the
various functions and modules. The expansion to several players naturally made various
new lines of program necessary. A points account is now kept for each player and the
games are counted individually. These lists are generated dynamically after the program
has started, depending on the number of players with the help of a list comprehension.
MicroPython makes possible what the Arduino IDE fails to do. After each game, the list of
points is sorted in ascending order. Whoever needed the lowest number of attempts is
ahead of the game.

But it is not enough to simply sort the list of points, because the player's number has to be
assigned correctly. This happens in the following two lines and therefore deserves special
attention and explanation.

score={i:totalScore[i] for i1 in range(len (totalScore)) }
sl=sorted(score.items (), key=lambda x: x[1])

With the help of a dict comprehension, a dictionary is automatically built from the personal
point list and the index. The key concept for each entry is the player number to which the
score is assigned after the ":". The sorted function uses this to generate a sorted list with
the score as a sorting criterion. score.items () returns a list of tuples with the index as the
first value and the score as the second value. The lambda function picks out one tuple x
and returns the score x [1] as a sorting criterion. The result of the sorted function is the
sorted list of tuples. Let us use a numerical example as an aid.

>>> score={0:23,1:12,2:6,3:19}

>>> score.items()
dict_items([(0, 23), (1, 12), (2, 6), (3, 19)])

>>> s|=sorted(score.items(), key=lambda x: x[1])
>>> g

[(2, 6), (1, 12), (3, 19), (0, 23)]

The rest of the program doesn't hold any great secrets. The functions have not changed in
comparison to Ringmaster 1. What is new is the management of several players who take
turns in turn. The number of players is determined at the beginning, then the game starts
after entering the participant number.

InitGame () first creates a new 4-tuple of colors that are to be guessed. All colors of the
game march in and dance 3 rounds. startGame () prompts for the first dance, that is to
say, for the first choice of color. The white LED indicates the input position. This is always
the next LED next to it in a clockwise direction. Use the 2 and 0 buttons to scroll through
the color scale, and use * and # to move to the next LED position EAST, NORTH, WEST,
SOUTH or vice versa. The selection is accepted with D.

With the play () function you enter the hot phase of the game. After checking the first color
choice, which in most cases will probably not report an immediate hit, we are asked to
make another selection. If the check determines that the color sequence of the gameState
matches myState, we have all located the colors correctly - a direct hit. Each correctly
guessed color is indicated by switching on the same color on the LED following clockwise.
If the color we have chosen is contained in the solution, but can be found in a different
direction, then this is communicated to us by the color white. Each D increases the number
of attempts by 1. This value is shown separately in the display.

After finding the agreement for all positions, the program returns from the play () function.
The content of the global variable numberOfTrials, the number of attempts, is added to
totalScore. This value and the number of game rounds appear in the display. After
pressing (almost) any key, the rating list is displayed. Ringmaster 2 waits again for a
button to be pressed and starts a new round of the game. Unless key A has been pressed,
it terminates the program at this point.

Oh, | forgot to mention a few lines of the program. There is a for loop in the initGame ()
function, which is only used for cheating.

for 1 in range (positions):
#np[i*3]=palette[color[edge[i]]]
#print (color[edge[i]] ,end="*")
pass

#np.write ()

During the test phase, the commented out lines reveal the secret numerical code for the
color template. After that, they should be commented out, otherwise the fun of the game
quickly becomes dull.

Codenumber — Guess the secret number

Another simple game also needs at least a numeric keypad for entering solution attempts.
It's about guessing a secret number that the system "rolled". The game itself is not
demanding in terms of the program, which can be written down in a few lines. What is
interesting, however, is the response from the ESP32, which takes the form of a "magic
eye". The last entry can be followed on the display, while the neopixel ring shows the
tendency of the process. From the pixel with the number 0, the arcs in the left and right
halves of the ring show whether the player is below or above the number to be guessed
and how close he has come to the goal. Each LED corresponds to around 16% of the
distance between the code number and either the 0 or the upper limit. And so that it
doesn't get boring too quickly, the ESP32 changes both the code number and the upper
limit with each run. Like Ringmaster 2, Codenumber is also designed for multiple players.

There are no changes to the circuit structure for Ringmaster 2. The program structure is
also comparable. The main changes happen in the functions initGame (), startGame (),

play () and compareToSolution (). If nothing changes in the basic idea of the game, you
can keep the existing program structure and give the game a new face by adapting the

four functions just mentioned and possibly by exchanging hardware.

Here comes this Listing von Codenumber.

codenumber.py

Author: Jirgen Grzesina

Revision: 1.0

Stand: 07.06.2021

R R b b b b b I b b b b b b b b b b b b b b b d b b b b i b i b g
Importgeschaeft

Ak khkkhkhkkhhAhkhkhkkhhkhkhkhkkhhkhkhhkhhkhkhkhkhkhkhrhkhkhkhhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkkhkkxk*x
import os,sys # System- und Dateianweisungen

import esp # nervige Systemmeldungen aus

esp.osdebug (None)

import gc # Platz fuer Variablen schaffen
gc.collect ()

#

from machine import Pin, I2C

from neopixel import NeoPixel

from keypad import KEYPAD I2C, KEYPAD

from i2cbus import I2CBus

from time import sleep, time, ticks ms

#from lcd import LCD

#from hd44780u import HD44780U, PCF8574U I2C
from oled import OLED

#from button import BUTTON32, BUTTONS

#

L I R R A A i b b b i e b IR b ¢ Objekte declarieren R e e A A A i b b b b i S 2 g b ¢

i2¢c=I2C(-1,scl=Pin(21),sda=Pin(22), freg=400000)
ibus=I2CBus (i2c)

http://www.grzesina.de/az/spiele/ringmaster2/codenumber.py

sl=sorted(score.items (), key=lambda x: x[1])
scores=""
for i in range (nbrOfPlayers) :
scores=scores+"P{}:{};".format (s1[1][0],s1[i][1])
disp.writeAt (scores,0,1)
taste=k.waitForKey (0,ascii=True)
if taste=="\x08":
print ("Game Over")
disp.clearAll ()
disp.writeAt (" GAME OVER",0,0)
sys.exit ()
sleep (0.8)

You will look in vain for the getColor () function in Codenumber, because | removed it
because it was only relevant for ring masters. | would like to draw your attention to a very
inconspicuous place in the initGame () function.

>>> pf = os.urandom (4)

>>> cnbr = bf [1] << 8 | bf [0]

>>> upper limit = bf [3] << 8 | bf [2]

>>> jf cnbr> upper limit: cnbr, upper limit = upper limit, cnbr

urandom assigns a byte object to bf. An integer value in the range between 0 and 65535
incl. Is calculated from 2 bytes each. And now it comes, if cnbr should be greater than the
upper limit, it has to be exchanged.

cnbr, upper limit = upper limit, cnbr

Now try that with the Arduino IDE, not to mention that it is not possible to do it interactively.
You need at least one program to test it. - | love MicroPython because it makes things like
this very easy!

Preview:

The park of functions for controlling the neopixel ring has grown so much that it is worth
building a class out of it. That's exactly what we'll do in the next episode. As an application,
we're programming a model for one of the guys who pull the money out of people's
pockets in the Cassinos in Las Vegas. We are talking about "one-armed bandits".

Until then, have fun tinkering, programming and playing!

usefull links:

PDF in deutsch

PDF in english

Wie arbeitet die Abfrage einer Tastaturmatrix?
Farben-Raten mit Ringmasterl

Thonny — Installation und Einflihrung

http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_eng.pdf
http://www.grzesina.de/az/das_modul_keypad.html
http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html

