

Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

In this post, I'll introduce a game that involves guessing colors. The aim is to guess the
four colors with as few passes as possible. Strategy is required. The use of hardware is
very similar to that in the blogs about the use of GPS, SMS and telephony with the ESP32.
However, this time the topic of wireless connections is completely absent. No sensors are
needed either. Be curious. So welcome to the introduction of the game

Ring Master 1 –
Games with the ESP32 in MicroPython

The LCD keypad from other blog episodes is used again, as are the buttons and the
display. The RST button again fulfills the function of an emergency brake. As an
alternative to the LCD keypad, I will present an OLED display in the second episode,
because a few potential lines of text do no harm when evaluating the game results. Of
course, a different keyboard is also required.

The game is controlled in this sequence using the five buttons on the LDC keypad. UP and
DOWN scroll through the list of six LED colors, while LEFT and RIGHT move to one of the
four LED positions. I like to use the RST button as an emergency brake during
development.

http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://www.grzesina.de/az/spiele/masterring/masterring_eng.pdf

Using the emergency brake means terminating the current program precisely without
restarting it immediately. The name "reset button" is therefore rather misleading and only
applies if you use the keypad shield in the arduino's orbit, where it belongs natively.

All objects, variable contents and function definitions created up to the point of cancellation
are retained for manual access via REPL, the MicroPython command line. In this way, for
example, functions and program parts can be tested without having to re-enter a whole
series of imports and declarations, etc. each time. The fact that such tests can be carried
out easily via the REPL command line is a decisive advantage of the MicroPython
environment.

Hardware
A MicroPython program is created for "Ring Master". That means we need a MicroPython-
capable controller. The choice fell on an ESP32, because no large screen like the Raspi,
but only an LCD should be controlled. The ESP8266-12F is not available due to
insufficient RAM memory, it lacks a good 1200 bytes. As already mentioned, we are
satisfied with the five keys on the LCD keypad for the time being. The display is operated
via an I2C parallel adapter, which also adjusts the level from 3.3V on the ESP32 to 5V on
the LCD keypad. There is a built-in module in the MicroPython firmware for the neopixel
ring, which makes programming child's play. A few comments on the function of the ring
follow below. Its current consumption is around 20mA.

1 ESP32 NodeMCU Module WLAN WiFi Development Board mit CP2102 oder ähnlich

1 LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen

1 I2C IIC Adapter serielle Schnittstelle für LCD Display 1602 und 2004

4 Widerstand 10kΩ

1 Battery Expansion Shield 18650 V3 inkl. USB Kabel

1 Li-Akku Typ 18650

1 LED Ring 5V RGB WS2812B 12-Bit 37mm oder ähnlich

The circuit for "Ring Master 1" is largely taken from the fifth episode of the GPS blog. If
you want to use a 5V power supply instead of the battery holder and the Li battery, you
have to connect the 5V to pin 20, Vin, of the ESP32. The 3.3V pin of the ESP32 then
supplies the I2C parallel converter.

https://www.az-delivery.de/products/esp32-developmentboard?_pos=3&_sid=854ce9b38&_ss=r
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/rgb-led-ring-ws2812-mit-12-rgb-leds-5v-fuer-arduino?variant=18912609108064

*

The supply from a 4.5V block of alkaline cells would be sufficient for the controller board,
but the display is not satisfied with that. An extra 5V regulator must be used for supply
voltages above 5V, because the neopixel ring must not receive more than 5.3V. Old PC
power supplies are very suitable for experimenting because they provide 3.3V and 12V in
addition to 5V.

The following figure shows the circuit diagram. A more readable copy in A4 can be
downloaded as a PDF file.

http://www.grzesina.de/az/spiele/masterring1/master_ring1_schematic.pdf

12 Neopixel LEDs of type WS2812B are installed on the LED ring. Power is supplied in
parallel. The data line runs serially from one LED unit to the next and represents a special
type of bus. Each unit contains an RGB LED and a controller that reacts to the first
incoming 24-bit sequence of color information. The signals are generated by a
microcontroller such as the ESP32. 24 bits are generated for each neopixel unit (8 each
for green, red and blue). The duration for one bit is 1.25µs +/- 0.150µs, the transmission
frequency is thus approx. 800kHz. For a 1 the line is 0.8µs on HIGH and 0.45µs on LOW,
a 0 is coded with 0.4µs HIGH and 0.85µs LOW. The first incoming 24 bits are processed
by each WS2812B unit, all following bits are amplified and passed on to the next unit. The
signal sequence from the microcontroller is therefore 24 bits shorter from LED to LED. In
contrast to a conventional data bus, the WS2812B units do not receive the data at the
same time, but with a time delay of 24 bits times 1.25 µs / bit = 30 µs.

A frame buffer in the RAM of the ESP32 temporarily stores the color values (3 x 256 =
16.7 million), and the NeoPixel.write () command sends the information over the "bus" that
is attached to a GPIO output (in our case GPIO13). Several rings can be cascaded just
like individual LEDs by connecting the input of the next ring to the output of the previous
one. The connections are made at the rear, preferably using thin strands. To protect the
eyes, I use a maximum brightness level of 32. The total current consumption of the ring is
less than 20mA on average. The easiest way to determine the components for the mixed
colors is by experiment using REPL. The brightness of the individual partial LEDs is quite
different. The color codes in the tuples will therefore rarely have the same value.

>>> from neopixel import NeoPixel
>>> neoPin=Pin(13)
>>> neoCnt=12
>>> np=NeoPixel(neoPin,neoCnt)
>>> np[0]=(32,16,0)
>>> np.write()

For comparison, the last two commands are repeated with a different RGB code. The
values given here produce "yellow".

At full luminosity, the LED units suck 50mA each, which requires a good constant voltage
source and cooling of the ring.

Die Software
Verwendete Software:
Fürs Flashen und die Programmierung des ESP32:
Thonny oder
µPyCraft

Verwendete Firmware:
MicropythonFirmware
Bitte eine Stable-Version aussuchen

MicroPython-Module und Programme
LCD-Standard-Modul
HD44780U-I2C-Erweiterung zum LCD-Modul
keypad.py Modul für Tastenfeld-Unterstützung

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/spiele/masterring1/lcd.py
http://www.grzesina.de/az/spiele/masterring1/hd44780u.py
http://www.grzesina.de/az/spiele/masterring1/keypad.py

mcp.py Modul für Porterweiterungsbaustein MCP23017
ringmaster1.py Hauptprogramm

The development environment - example: Thonny
Thonny ist unter MicroPython das Gegenstück zur Arduino-IDE. In Thonny sind ein
Programmeditor und ein Terminal sowie weitere interessante Entwicklungstools in einer
Oberfläche vereint. So haben sie das Arbeitsverzeichnis auf dem PC, das Dateisystem auf dem
ESP32, Ihre Programme im Editor, die Terminalconsole und zum Beispiel den Object inspector in
einem Fenster übersichtlich im Zugriff.

The resource for Thonny is the file thonny-3.3.x.exe, the latest version of which can be
downloaded directly from the product page. There you can also get an initial overview of the
features of the program.

Right-click on Windows and save target as to download the file to any directory of your choice.
Alternatively, you can also follow this direct link.
In addition to the IDE itself, the Thonny bundle also includes Python 3.7 for Windows and esptool.py.
Python 3.7 (or higher) is the basis for Thonny and esptool.py. Both programs are written in Python and
therefore require the Python runtime environment. esptool.py also serves as a tool in the Arduino IDE
to transfer software to the ESP32 (and other controllers).

Now start the installation of Thonny by double-clicking on your downloaded file, if you only want to use
the software for yourself. If Thonny & Co. is to be available to all users on your computer, you have to
run the exe file as administrator. In this case, right click on the file entry in Explorer and select Run as
administrator.

Most likely, Windows Defender (or your antivirus software) will answer you. Click on more information
and, in the window that opens, click on Run anyway. Now just follow the user guidance with Next

http://www.grzesina.de/az/spiele/masterring1/mcp.py
http://www.grzesina.de/az/spiele/masterring1/ringmaster1.py
https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://thonny.org/

Click on Install to start the installation process.

When you start the program for the first time, you specify the language, then the editor
window is displayed together with the terminal area.

As the first action set the type of controller used. With Run - Select Interpreter… you land
in the options. For this project, please set Micropython (ESP32).

Now download the Micropython firmware for the ESP32 from the selection page and save
this file in a directory of your choice. The bin file must first be transferred to the ESP32.
This also happens to Thonny. Call up Thonny Options again with Run - Select
Interpreter…. At the bottom right click on Install or update Firmware.

Select the serial port to the ESP32 and the downloaded firmware file. Start the process
with Install. After a short time, the MicroPython firmware is on the controller and you can
send the first commands to the controller via REPL, the MicroPython command line. For
example, enter the following command in the Terminal window.

print("Hallo Welt")

Unlike in the Arduino IDE, you can send individual commands to the ESP32 and, if it is
MicroPython instructions, it will respond well. On the other hand, if you send a text that is
incomprehensible to the MicroPython interpreter, it will alert you to this with an error
message.

>>> print"hallo nochmal"

SyntaxError: invalid syntax
Traceback (most recent call last):
 File "<stdin>", line 1
SyntaxError: invalid syntax

To work, however, the overview of the workspace and the device directory is still missing. The
workspace is a directory on the PC in which all files that are important for a project are located.
In Thonny his name is This Computer. The device directory is the counterpart on the ESP32.
In Thonny it is called MicroPython device. You can display it as follows.

Click on View and then click on Files

Both areas are now displayed, the workspace at the top and the device directory at the
bottom. You can display additional tools via the View menu.

We enter our programs in the editor area. For a new program, open an editor window by
clicking the New button or by pressing the key sequence Ctrl + N.

In the Arduino IDE, libraries are recompiled every time the program is compiled and
integrated into the program text. In MicroPython you only have to upload finished modules,
they correspond to the libraries of the Arduino IDE, to the flash of the ESP32 at the
beginning. I will show this with an example.

Create a project folder on your computer in any directory in Explorer. In this directory you
create a folder with the name workspace. All further actions start in this directory and all
programs and program parts will live there.

The KEYPAD class is required in the project. The text for this is in the keypad.py file. The
best thing to do is to load all modules into your workspace right away. If you have not
already done so, start Thonny and navigate to your working directory in the "This
Computer" window. The downloaded files should now appear in the workspace. A right
click opens the context menu and the process is started by clicking on Upload to /.

If you have changed something on a module, it must be uploaded again, but only this one.
Then answer the security question about overwriting with OK.

After uploading the first 4 modules it looks like this. The boot.py file in the device directory
is automatically created when the firmware is flashed. At the end, when everything has
been tested, we will copy the content of our program into this file. The ESP32 will then run
the program autonomously each time it is started. A connection to the PC is then no longer
necessary.

Tricks and Infos on MicroPython
MicroPython is an interpreter language. The main difference to the Arduino IDE, where
you always and exclusively flash entire programs, is that you only have to flash the
MicroPython firmware once at the beginning on the ESP32 before the controller
understands MicroPython instructions. You can use Thonny, µPyCraft or esptool.py for
this. For Thonny I have described the process above.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first having
to compile and transfer an entire program. This is exactly what bothers me about the
Arduino IDE. You simply save an enormous amount of time if you can do simple tests of
the syntax and hardware through to trying out and refining functions and entire program
parts via the command line before you knit a program out of it. For this purpose I also like
to create small test programs over and over again. As a kind of macro, they combine
recurring commands. From such program fragments, entire applications can develop. If
the program is to start autonomously when the controller is switched on, copy the program
text into a newly created blank file. Save this file under boot.py in the workspace and
upload it to the ESP32 / ESP8266-01. The program starts automatically the next time it is
reset or switched on.

Programs are started manually from the current editor window in the Thonny IDE using the
F5 key. This is faster than clicking the start button or using the Run menu. Only the
modules used in the program must be in the flash of the ESP32.

If you later want to use the controller together with the Arduino IDE again, simply flash the
program in the usual way. However, the ESP32 / ESP8266 then forgot that it ever spoke
MicroPython. Conversely, any Espressif chip that contains a compiled program from the
Arduino IDE or the AT firmware or LUA can easily be provided with the MicroPython
firmware. The process is always as described above.

Before we start programming the game, I'll briefly introduce you to a few important
MicroPython structures and commands that I used in the program.

Data fields
In addition to the simple data types such as integers and floating point numbers, strings
(aka character strings) and the Boolean values True and False as well as the exotic none,
we encounter lists, dicts (dictionaries aka hash arrays) and tuples in the program. Lists
replace the arrays you may know from the Arduino IDE. Both types belong to the iterable
objects. That means you can edit them with the help of loops. We do this at various points
in the program.

So-called slicing allows subsets of lists and strings to be extracted. The ":" is used for this
purpose. Individual elements of a list are addressed by their index. This is the place
number in the list or the key term in a dict. The following structures appear in our program.
The following statement defines a list. Unlike in the Arduino IDE, data of different types
can be combined in a list or a dict.

List = [34, "Test", 3.1415, [4,5,6]]
Indexing: Addressing individual elements
List [2] returns 3.1415, because indexing starts with 0, not with 1

Slicing: Cut out a part of the list
List [1: 3] returns ["Test", 3.1415], because the 3 limits the range, but is always left out.
List [: 2] returns [34, "Test"], because the index 0 does not have to be specified.
List [2:] delivers [3.1415, [4,5,6]] thus everything from the 2nd element to the last. List
elements such as [4,5,6] can also be any structure.
List [2: -1] returns [3.1415], from the 2nd element to the last only
List [2: -2] = [] from the 2nd element to only the penultimate one. There is nothing left.
List [-2] = 3.1415, the penultimate element

palette is a dictionary whose keys are strings. It is written with curly brackets. The values
follow the ":", here they are so-called tuples. They are written with round brackets. Each
tuple consists of the three color information for red, green and blue. Commas separate the
individual elements of the tuple. palette ["yellow"] has the value (32,16,0). You can also
simply print out dicts. However, there is no guarantee that the elements will appear in the
order in which they were defined. With hashlists you have to live with it.

>>> palette= { # (r,g,b)
 "red":(32,0,0),
 "green":(0,16,0),
 "blue":(0,0,16),

 "yellow":(32,16,0),
 "magenta":(16,0,8),
 "cyan":(0,16,8),
 "white":(12,12,12),
 "black":(0,0,0)
 }

>>> palette
{'magenta': (16, 0, 8), 'yellow': (32, 16, 0), 'cyan': (0, 16, 8), 'blue': (0, 0, 16), 'white': (12,
12, 12), 'black': (0, 0, 0), 'red': (32, 0, 0), 'green': (0, 16, 0)}

color is a normal, indexed list. It is defined with square brackets. Lists begin with the index
0. color [3] therefore references the fourth entry, the string "yellow".

color=[
 "red",
 "green",
 "blue",
 "yellow",
 "magenta",
 "cyan",
 "white",
 "black",
]

The color list assigns a unique location number to the color codes. This makes it possible
to address the color codes in the palette in counting loops (for loops) using numbers as
index values in a targeted and reproducible manner. We do this at different points in the
program.

MicroPython behaves similarly to the assignment of simple variables when assigning lists.

a = 7
b = a
ListA = [1,2,3,4]
ListB = ListA

b and ListB are not new variables, just new names for the same object. You can check this
with the help of REPL.

>>> a=7
>>> b=a
>>> a is b
True
>>> id(a)
15
>>> id(b)
15
>>> ListeA=[1,2,3]
>>> ListeB=ListeA
>>> ListeB is ListeA

True
A look into the object inspector confirms this based on the memory address of ListA and
ListB.

We have to keep this in mind if we really want to create a copy of an object. It's not a big
act for simple variables. As soon as a or b is assigned a new value, the two go their
separate ways. But we noticed a nasty side effect with lists.

>>> ListA = [1,2,3]
>>> ListB = ListA
>>> ListA [2] = 5
>>> List B.
[1, 2, 5]
>>> ListA is ListB
True

ListA is still identical to ListB. The two names refer to the same memory location. If a list
element is changed under the name ListA, this also affects the name ListB, because both
point to the same memory location, the beginning of the list [1,2,5]. In order to really create
an independent copy of ListA, all elements must be copied individually. In addition to a for
loop, this is much easier with the following notation, which is also used in the program.
Such subtleties often seem inexplicable and are often overlooked.

>>> ListB = ListA [:]
>>> ListA is ListB
False

colors = len (color) determines the number of entries in the color list.

With a trick called comprehension, you can even get a list or dict to define itself.

neoCnt = 12
...
...
...
kringle = [7 for i in range (neoCnt)]

Our neopixel ring has 12 LEDs. The list kringel should contain color information for each
LED as a shadow variable and should be preset with 7, i.e. black (= off). Because the
number of LEDs can change, we do not define the list with a constant length. range
(neoCnt) includes the whole numbers from 0 to 11, because MicroPython always excludes
the upper limit of ranges, as we know. The comprehension

7 for i in range (neoCnt)

so creates a list with 12 times the 7 as elements. If you change neoCnt to 36, you get a list
with 36 sevens for kringel without changing the program.

The following for loop is used in the lightKringel () function to display the current
assignment of kringel.

for i in range(neoCnt):

 np[i]=palette[color[kringel[i]]]

As a running index, i runs through the values from 0 to 12. Kringel [i] contains the color
index 0 to 5. This determines the color string from the list color, which finally fetches the
corresponding tuple as a key from the dict palette. This is finally transferred to the neopixel
list np [] with the same index.

A central operation should perhaps be briefly discussed before finally programming. At
several points in the program, increasing and decreasing indexes is about maintaining the
range of values. The color numbers may only be in the range between 0 and 5, the LED
positions between 0 and 3. So that after cyan comes red immediately and not white or
after black an index error occurs because there is no color with the number 8, a range
check must be performed each time the index increases or decreases. Instead of
cumbersome with if and else, I chose the more elegant method of ring addition. The
normal addition / subtraction paired with the modulo division, which delivers the rest of the
operation instead of the quotient value for an integer division (operator //). Your operator is
the "%" sign.

 - What do you mean, this is too complicated? - Yes of course, I understand, you prefer
examples to general presentation, no problem, well then:

13% 6 = 1, because 13 // 6 = 2 and therefore remainder = 1.
5% 6 = 5 because 5 // 6 = 0 and remainder = 5
(3 + 1)% 6 = 4, because 4 // 6 = 0 and remainder = 4
but:
(5 + 1)% 6 = 0, because 6 // 6 = 1 and remainder = 0
With the addition we stay within the group of numbers from 0 to 5 and after 5 comes 0
when counting.
This also works with summands other than 1
(5 + 4)% 6 = 3, because ... but you can certainly justify that yourself now.

It gets exciting when subtracting.
(4-1)% 6 = 3, of course!

but what do we do with this?
(0-1)% 6 =? REPL says 5. But why?

Actually, this is what happens. To avoid negative numbers, module 6 is added first. I could
do that several times. Modulo 6, the values 0, 6, 12, ... are equivalent, they all have the
same 6's remainder, namely 0. Now you can subtract 1 without going into the negative
range.

(0-1)% 6 = (0 + 6-1)% 6 = 5, because 5 // 6 = 0 and remainder = 5.

It is in this form in various places in the program. If you cut out the part of the number line
and bend it into a curl, you have the graphic illustration of the whole. Oh yes, with our LED
ring, LED 0, modulo 12, comes after LED number 11.

In order for the ringmaster1.py program to be executed, all modules listed above must be
uploaded to the ESP32's flash memory. These are the files hd44780u.py, i2cbus.py, lcd.py

and mcp.py. When this is done, we can start the program ringmaster1.py in the editor
window with F5 - provided the hardware is assembled and the ESP32 is connected to the
PC.

Here is the listing of the program.

ringmaster1.py

Author: Juergen Grzesina

Revision: 1.1

Score-Bug geloest

Anzeige verdeckter Farben korrigiert

Abbruch durch Taste A eingebaut

kleinere Bugs beseitigt

Stand: 04.06.2021

Importgeschaeft

import os,sys # System- und Dateianweisungen

import esp # nervige Systemmeldungen aus

esp.osdebug(None)

import gc # Platz fuer Variablen schaffen

gc.collect()

from machine import Pin, I2C

from neopixel import NeoPixel

from keypad import KEYPAD_LCD, KEYPAD

#from i2cbus import I2CBus

from time import sleep, time, ticks_ms

from lcd import LCD

from hd44780u import HD44780U, PCF8574U_I2C

#from button import BUTTON32,BUTTONS

***************** Objekte declarieren ******************

Pins fuer parallelen Anschluss des 4x4-Pads

i2c=I2C(-1,scl=Pin(21),sda=Pin(22),freq=400000)

#ibus=I2CBus(i2c)

disp=LCD(i2c,adr=0x27,cols=16,lines=2) # LCDPad am I2C-Bus

keyHwadr=0x20 # HWADR des Portexpanders fuer das 4x4-Pad

#kp=KEYPAD_I2C(ibus,keyHwadr) # Hardware Objekt am I2C-Bus

#cols=(15,5,18,19)

#rows=(13,12,14,27)

#kp=KEYPAD_P(rows,cols) # HW-objekt mit Parallel-Anschluss

kp=KEYPAD_LCD(pin=35) # LCD-Keypad-Tastatur an ADC35

k=KEYPAD(kp,d=disp) # hardwareunabhaengige Methoden

rstNbr=25

#rst=BUTTON32(rstNbr,True,"RST")

ctrl=Pin(rstNbr,Pin.IN,Pin.PULL_UP)

#t=BUTTONS() # Methoden fuer Taster bereitstellen

neoPin=Pin(13)

neoCnt=12

np=NeoPixel(neoPin,neoCnt)

palette= { # (r,g,b)

 "red":(32,0,0),

 "green":(0,16,0),

 "blue":(0,0,16),

 "yellow":(32,16,0),

 "magenta":(16,0,8),

 "cyan":(0,16,8),

 "white":(12,12,12),

 "black":(0,0,0)

 }

color=[

 "red",

 "green",

 "blue",

 "yellow",

 "magenta",

 "cyan",

 "white",

 "black",

]

colors=len(color)

red=0; green=1; blue=2; yellow=3

magenta=4; cyan=5; white=6; black=7

kringel=[7 for i in range(neoCnt)]

ready=False

gameState=[7,7,7,7]

myState=gameState[:]

positions=len(gameState)

numberOfTrials=0

def lightKringel():

 for i in range(neoCnt):

 np[i]=palette[color[kringel[i]]]

 np.write()

def clearKringel():

 global kringel

 kringel=[7 for i in range(neoCnt)]

 for i in range(neoCnt):

 np[i]=(0,0,0)

 np.write()

 sleep(0.03)

def clearRing():

 for i in range(neoCnt):

 np[i]=(0,0,0)

 np.write()

 sleep(0.03)

def rainbowKringel(colList,cnt=3,delay=0.3):

 colors=len(colList)

 cols=colList[:]

 cols.extend([7 for i in range(colors,neoCnt)])

 colors=len(cols)

 global kringel

 global ready

 ready = False

 clearKringel()

 for m in range(colors):

 #print(m)

 for n in range(m+1):

 kringel[m-n]=cols[n]

 #print(m,n)

 #print(kringel)

 lightKringel()

 sleep(delay)

 for m in range (cnt-1):

 for k in range(neoCnt):

 h11=kringel[neoCnt-1]

 for n in range(neoCnt-1):

 kringel[(neoCnt-1)-n]=kringel[(neoCnt-1)-n-1]

 kringel[0]=h11

 #print(kringel)

 lightKringel()

 sleep(delay)

 ready=True

def dimKringel(delay=0.1,stufen=8,down=True):

 global ready

 ready=False

 for h in range(stufen+1):

 for i in range(neoCnt):

 r,g,b=palette[color[kringel[i]]]

 if down:

 col=(r*(stufen-h))//stufen

 rn=(col if h<stufen else 0)

 col=(g*(stufen-h))//stufen

 gn=(col if h<stufen else 0)

 col=(b*(stufen-h))//stufen

 bn=(col if h<stufen else 0)

 else:

 col=(r*(h))//stufen

 rn=(col if h<stufen else r)

 col=(g*(h))//stufen

 gn=(col if h<stufen else g)

 col=(b*(h))//stufen

 bn=(col if h<stufen else b)

 np[i]=(rn,gn,bn)

 np.write()

 sleep(delay)

 ready=True

def blinkKringel(on=0.3,off=0.7,cnt=1):

 c=cnt

 for i in range (c):

 lightKringel()

 sleep(on)

 clearRing()

 sleep(off)

def randomKringel():

 global kringel

 kringel=[int(i)%7 for i in os.urandom(neoCnt)]

 lightKringel()

def showStatus(stat):

 for i in range(len(stat)):

 kringel[i*3]=stat[i]

 lightKringel()

def initGame():

 clearKringel()

 edge=[int(i)%6 for i in os.urandom(4)]

 #print(edge)

 for i in range(positions):

 #np[i*3]=palette[color[edge[i]]]

 print(color[edge[i]],end="*")

 pass

 #np.write()

 print("")

 rainbowKringel([red,yellow,green,cyan,blue,magenta],\

 cnt=2,delay=0.03)

 dimKringel(stufen=8)

 clearKringel()

 return edge # goes to gameState

def startGame():

 # Keyblock:

 # Taste Funktion

 # * Position back (n+9)%12 (n+3)%4

 # # Position next (n+3)%12 (n+1)%4

 # A Abbruch

 # D OK, set myStatus

 state=[7,7,7,7]

 clearKringel()

 getColorStatus(state)

 return state

def compareToSolution(mystat):

 global kringel

 global numberOfTrials

 numberOfTrials+=1

 reply=True

 for i in range(positions):

 kringel[3*i+1]=7

 if mystat[i]==gameState[i]:

 kringel[3*i+1]=gameState[i]

 reply=reply & True

 elif mystat[i] in gameState:

 kringel[3*i+1]=6

 reply=False

 else:

 reply=False

 lightKringel()

 sleep(0.3)

 return reply

def getColorStatus(myStat,delay=0.3):

 ms=myStat

 showStatus(ms)

 i=0

 w=ms[i]

 np[neoCnt-1]=palette[color[white]]

 np.write()

 disp.clearAll()

 disp.writeAt("up=2, down=0 {}".format(numberOfTrials),0,0)

 while 1:

 disp.writeAt("Position {}".format(i),0,1)

 ch=k.asciiKey()

 if ch != "\xFF":

 if ch=="*":

 rp=(i*3+(neoCnt-1))%neoCnt

 np[rp]=palette[color[black]]

 i=(i+3)%positions # 1 Position zurueck

 rp=(i*3+(neoCnt-1))%neoCnt

 np[rp]=palette[color[white]]

 np.write()

 w=ms[i]

 sleep(delay)

 elif ch=="+":

 rp=(i*3+(neoCnt-1))%neoCnt

 np[rp]=palette[color[black]]

 i=(i+1)%positions # 1 Position vor

 rp=(i*3+(neoCnt-1))%neoCnt

 np[rp]=palette[color[white]]

 np.write()

 w=ms[i]

 sleep(delay)

 elif ch=="\x0d":

 rp=(i*3+(neoCnt-1))%neoCnt

 np[rp]=palette[color[black]]

 np.write()

 disp.clearAll()

 return ms

 elif ch=="2":

 w=ms[i]

 w=(w+1)%(colors-2) # mod (colors-2) Addition

 np[i*3]=palette[color[w]]

 ms[i]=w

 np.write()

 sleep(delay)

 elif ch=="0":

 w=ms[i]

 w=(w+colors-3)%(colors-2) # mod (colors-2) Subtr.

 np[i*3]=palette[color[w]]

 ms[i]=w

 np.write()

 sleep(delay)

 elif ch=="\x08":

 print("Game Over")

 disp.clearAll()

 disp.writeAt(" GAME OVER",0,0)

 clearKringel()

 sleep(delay)

 sys.exit()

 if ctrl.value()==0:

 print("Game Over")

 disp.clearAll()

 disp.writeAt(" GAME OVER",0,0)

 sys.exit()

def play(mystat):

 ms=mystat

 showStatus(ms)

 if compareToSolution(ms):

 disp.clearAll()

 return

 while 1:

 ms=getColorStatus(ms)

 showStatus(ms)

 vergleich=compareToSolution(ms)

 if vergleich:

 disp.writeAt("TRIALS: {}".format(numberOfTrials),6,0)

 sleep(1)

 disp.clearAll()

 return

 sleep(0.5)

******************** Hauptschleife ********************

disp.clearAll()

disp.writeAt("RINGMASTER 1",0,0)

disp.writeAt("WELCOME",0,1)

sleep(3)

totalScore=0

games=0

while True:

 numberOfTrials=0

 gameState=initGame()

 clearKringel()

 disp.writeAt("Start now",0,1)

 sleep(1)

 myState=startGame() #[1,0,3,1]

 play(myState)

 totalScore=totalScore+numberOfTrials

 games+=1

 disp.clearAll()

 disp.writeAt("Rounds {}".format(games),0,0)

 disp.writeAt("Total score {}".format(totalScore),0,1)

 sleep(1)

 taste=k.waitForKey(0,ascii=True)

 print("Taste",taste)

 if taste=="+":

 print("Game Over")

 disp.clearAll()

 disp.writeAt(" GAME OVER",0,0)

 sys.exit()

 disp.clearAll()

The main program is very manageable with its 28 lines due to the relocation of the sub-
tasks to the various functions. After the greeting, initGame () creates a new 4-tuple of
colors that can be guessed. All colors of the game march in and dance 3 rounds.
startGame () prompts for the first dance, that is to say, for the first choice of color. The
white LED indicates the input position. This is always the next LED next to it in a clockwise
direction. Use the UP and DOWN buttons to scroll through the color scale, and LEFT and
RIGHT to move to the next LED position EAST, NORTH, WEST, SOUTH or vice versa.
The selection is accepted with SELECT.

With the play () function you enter the hot phase of the game. After checking the first color
choice, which in most cases will probably not report an immediate hit, we are asked to
make another selection. If the check determines that the color sequence of the gameState
matches myState, we have all located the colors correctly - a direct hit. Each correctly
guessed color is indicated by switching on the same color on the LED following clockwise.
If the color we have chosen is contained in the solution, but can be found in a different
direction, then this is communicated to us by the color white. The number of attempts is
increased by 1 with each SELECT. This value is shown in the upper right corner of the
display.

After finding the agreement for all positions, the program returns from the play () function.
The content of the global variable numberOfTrials, the number of attempts, is added to
totalScore. This value and the number of game rounds appear in the display. After

pressing (almost) any key, a new game round starts. The RIGHT key ends the program at
this point.

A few more comments on the key query. The keypad.py module can query the keys of the
LCD keypad, but also matrix keypads. We will come to a representative of the last
category in the next episode. The module contains several classes so that different
hardware components can be queried in the same way. The KEYPAD_LCD class is
responsible for the LCD keypad. Like the other classes, it contains a key () method that is
adapted to the hardware and returns a key number. This key number can then be
translated into an ASCII character. The string asciiCode is responsible for this. The string
contains so many character codes that each raw key number corresponds to an ASCII
character.

asciiCode = "+ 20 * \ x0d"

The keys RIGHT, UP, DOWN, LEFT, SELECT correspond to the raw key codes 0, 1, 2, 3,
4. The ASCII table results in the following assignment.

RIGHT UP DOWN LEFT SELECT

+ 2 0 *
ENTER=
Linefeed

Wondering how I came up with this crazy definition? Well, I want to tell you. It has to do
with the next blog post. I use an OLED display there, which of course has no buttons. So I
had to use a 4x4 keypad in addition to the display for the advanced game options. Yes,
and on this matrix keyboard "up" is on 2, "down" on 0, and so on.

With this trick, you only have to change something at one point in the program, namely at
the beginning.

from keypad import KEYPAD_LCD, KEYPAD

#from keypad import KEYPAD_I2C, KEYPAD

…

…

keyHwadr=0x20 # HWADR des Portexpanders fuer das 4x4-Pad

#kp=KEYPAD_I2C(ibus,keyHwadr) # Hardware Objekt am I2C-Bus

#cols=(15,5,18,19)

#rows=(13,12,14,27)

#kp=KEYPAD_P(rows,cols) # HW-objekt mit Parallel-Anschluss

kp=KEYPAD_LCD(pin=35) # LCD-Keypad-Tastatur an ADC35

k=KEYPAD(kp,d=disp) # hardwareunabhaengige Methoden

The comments on the bold lines have to be turned around, that's all. The KEYPAD_I2C
and KEYPAD_P classes also have a key () method which returns a key number and a
separate ASCII table for translation into ASCII characters.

The KEYPAD class above provides methods for handling keyboards, regardless of the
hardware: waitForKey (), asciiKey () and padInput ()

waitForKey takes the two optional parameters timeout and ascii. timeout is the waiting time
in seconds until the method returns either -1 or "\ xFF" if no key is pressed. If a key is

pressed in time, its raw key number or, if ascii = True was passed, the corresponding
ASCII character is returned. timeout = 0 waits forever for the key to be pressed.

The method padInput () expects a character string to be entered at position xp, yp on the
display, which is terminated by D. With suitable programming and other ASCII tables, the
entire alphabet could even be recorded using the 4x4 keypad.

The modules hd44780u.py and lcd.py have a similar structure. The first module contains
classes for operating the hardware and basic output. The class LCD offers methods that
are also contained in the class OLED with the same function. By changing the import and
the initialization, an LCD can be exchanged for an OLED display at any time. That's
exactly what we'll do in the next episode, Ring Master 2.

Oh, I forgot to mention a particular line of code. There is a for loop in the initGame ()
function, which is only used for cheating.

 for i in range(positions):

 #np[i*3]=palette[color[edge[i]]]

 #print(color[edge[i]],end="*")

 pass

 #np.write()

During the test phase, the commented out lines reveal the secret numerical code for the
color template. Then they should be commented out again, otherwise the fun of playing
will have a hole.

Until then, have fun tinkering, programming and playing!

PDF in deutsch

PDF in english

http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://www.grzesina.de/az/spiele/masterring/masterring_eng.pdf

