

Abbildung 1: Hangman auf dem ESP32

Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

In the previous episodes (Ringmaster2 and Bandit) on the topic of "Games on ESP32
with MicroPython", neopixel rings played the main role. In today's episode, it would
be conceivable to use them to display colorful results, but the focus is clearly on the
OLED display with its text and graphic display. The latter leaves out the LCD keypad
as a display option. The 5 keys would be sufficient, but nobody uses an LCD keypad
just for the keys. That's why I'm using the 4x4 keypad again. And if chance and luck
influenced the outcome of the game at Bandit, then the gift of combination is now the
key to success. Welcome, let's program a well-known game together, which is also
well suited as a vocabulary trainer

Hangman

Games on ESP32 with MicroPython

When describing the keypad.py module, I had already indicated that the 4x4 keypad
in conjunction with three ASCII tables would allow the entire alphabet to be entered.
While planning the Hangman, I thought carefully about using this solution to deliver
letters to the ESP32. The mere mechanical problem of creating a proper label for the
keyboard made me refrain from doing it every time.

http://www.grzesina.de/az/spiele/hangman/hangman_ger.pdf
http://www.grzesina.de/az/spiele/hangman/hangman_ger.pdf
http://www.grzesina.de/az/spiele/hangman/hangman_eng.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_eng.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_eng.pdf

Well, with Hangman you don't have to enter very long texts, individual letters are
enough. This ultimately led to the programming of a screen keyboard on the OLED
display. And because this display does not have a cursor, one was added in the
program. You can find out how all of this works and a lot more in this article. Some of
the hardware from the last episodes is used again.

1 ESP32 NodeMCU Module WLAN WiFi Development Board mit CP2102 oder
ähnlich

1 0,96 Zoll OLED I2C Display 128 x 64 Pixel - 1x OLED

1 4x4 Matrix Keypad Tastatur - 1x Keypad

1 MCP23017 Serielles Interface Modul

1 Battery Expansion Shield 18650 V3 inkl. USB Kabel

1 Li-Akku Typ 18650

1 LED Ring 5V RGB WS2812B 12-Bit 37mm als Option

Since we want to edit quite extensive word lists, which is logically very memory-
intensive, an ESP32 was put into service again. Because the OLED display is
addressed via I2C, I also reconnected the keyboard in this way. Only if you like things
a little more colorful can you use a neopixel ring to indicate the approach to the
solution. However, this is not absolutely necessary, just a nice accessory, but could
inform you how many twelfths of the total number of letters have already been found.

Das Spiel

I designed the playing field in Libre-Office-Calc. With a lot of imagination you can
guess what the later graphic will look like.

Abbildung 2: Spielfeld

Let's take a look at the OLED keyboard right away. After selecting one of the 9
columns, we accept one of the three characters by pressing the A, B or C key on the
4x4 keypad. The corresponding character is then displayed in column J for about one
second. If the letter appears in the solution word, it appears everywhere instead of
the underscore. If it was a mistake, a piece of the gallows is set up. We all know that
from our school days, when we played hangman on paper behind the back of the
person in front in dreary geography or German lessons.

https://www.az-delivery.de/products/esp32-developmentboard?_pos=3&_sid=854ce9b38&_ss=r
https://www.az-delivery.de/products/0-96zolldisplay?variant=26462805705
https://www.az-delivery.de/products/4x4-matrix-numpad?variant=12239800074336
https://www.az-delivery.de/products/mcp23017-serielles-interface-modul?variant=32344272568416
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/rgb-led-ring-ws2812-mit-12-rgb-leds-5v-fuer-arduino?variant=18912609108064

At the beginning of each game round we get 12 points on our account, they
correspond to the 12 parts of the hangman. Every wrong letter not only completes the
picture, but also subtracts a point. So it is not only important to have found all the
letters of the answer at some point, but with as few wrong letters as possible,
because at the end the remaining points are added to the total score. The latter is
displayed until the next round is pressed at the touch of a button.

Again a random number is determined and, with this as an index, a new word is
fetched from the word list. The word list resides as a file in the flash of the ESP32
until it is loaded into the RAM during a cold start. The words can have up to 36
characters, whereby umlauts and sharp "s" are noted as double sounds, as they do
not appear in the display alphabet. Since the flash memory is almost inexhaustible,
you could also store several such files there, for example on different topics.
Hangman.py keeps a record of this so that words are not loaded multiple times
during a session. Only when the whole list (60 terms) is through do repetitions
inevitably occur. The word lists are created with any editor and saved as a text file in
the workspace. With Thonny they are transferred from there to the ESP32.

So now you know what to expect. It all sounds very simple, but I'm sure you'd much
rather know how to do this in MicroPython. This can be met, especially since this time
it will be about a feature of the Python language in general. We will deal with this in
the next chapter, where we will also discuss the other interesting parts of the
hangman.py program. Then I will introduce the required software. Finally, it is about
hardware construction and commissioning.

Tricks und Infos zu MicroPython
You are familiar with functions and have already used them many times to
concentrate code that is used several times in a program in one place. This saves
memory space and increases the readability of a program.

You also already know that objects are local in a function, unless they are declared
as such in the function body by global. Local objects can only be referenced in the
scope of the function. When MicroPython has left the function, it can no longer
remember the local variables. The same applies to objects that were passed to the
function as parameters.

Now it happens that further functions are defined within a function, as in the next
example.

alltest.py

def outer(x):

 n=3

 def mal():

 produkt=n*x

 return produkt

 return x+produkt

Start with F5 makes the function outer () and its content known to the global
namespace (aka Scope). The syntax is correct, but the call returns an error message.

>>> outer (7)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in outer
NameError: name 'product' isn't defined

Of course, outer (x) doesn't know product, because the variable is local to the inner
function mal (). Of course, the global scope knows neither x nor n and certainly not
product.

>>> x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' isn't defined

>>> product
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'product' isn't defined

We get a similar error message for n.

Let's change the last line to get what we want.

def outer(x):

 n=3

 def mal():

 produkt=n*x

 return produkt

 return x+mal()

F5 and outer (7) return 28. As expected, the inner function mal () can read the n
defined outside and also the x passed as a parameter. It looks different if we want to
change the value of n within mal ().

alltest.py

def outer(x):

 n=3

 def mal():

 n=n*x

 return produkt

 return x+mal()

F5 und outer(7):

>>> outer(7)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in outer
 File "<stdin>", line 5, in mal
NameError: local variable referenced before assignment

n is now interpreted by MicroPython as local to mal () due to the left side of the
assignment. On the other hand, it is referenced in the product n * x before a value
has been assigned to n. But even n = 8 * x does not deliver the desired result at this
point, because after leaving mal (), n is still 3 instead of 56.

def outer(x):

 n=3

 def mal():

 n=8*x

 produkt=n*x

 print("innen",n)

 return produkt

 ergebnis=x+mal()

 print("außen",n)

 return ergebnis

F5 und outer(7):

innen 56
außen 3
399

However, none of this changes the fact that after exiting outer () none of the contents
of the functions are known, let alone can be restored.

I mentioned the global keyword above, which makes it possible to tell a function
about the higher-level scope of a variable. This makes it possible to change the value
of a function permanently. While global refers to the top level, there is something
comparable with nested functions through the keyword nonlocal.

def outer(x):

 n=3

 def mal():

 nonlocal n

 print("vorher",n)

 n=8*x

 produkt=n*x

 print("innen",n)

 return produkt

 ergebnis=x+mal()

 print("außen",n)

 return ergebnis

F5 und outer(7):

>>> outer(7)
vorher 3
innen 56
außen 56
399

As you can see, it is now possible to assign a new value to the variable n lying
outside mal () from the mal () function.

Now we go one step further and ensure that the inner function mal () can still be
called after exiting outer (). Even more, we also ensure that the inner function also
remembers the non-local variable n and even the parameter x of the outer function
outer (). This "secret" from MicroPython is called Closure (pronounced: "Klouscher").
What's behind it?

Functions can be treated as values in MicroPython. That means you can assign a
function to a variable, pass it as a function parameter or return it as the result of a
function. Please note that I'm not talking about a function value here, but the function
itself. Let's examine the next example.

def outer(x):

 n=0

 def mal():

 nonlocal n

 print("vorher",n)

 n=n+1

 produkt=n*x

 print("nachher",n)

 return produkt

 return mal

F5 und h=outer(2)

>>> h=outer(2)
>>> h()
vorher 0
nachher 1
2
>>> h()
vorher 1
nachher 2
4
>>> h()
vorher 2
nachher 3
6

Did you notice that outer() doesn't return a function value this time like it did in the
earlier examples? The outer function returns the inner function mal that we assign to
the variable h. This means that the function mal can be called, even if we have
already have left the scope of outer(). And two more things are absolutely
noteworthy. h () alias mal () remembers both the parameter 2, which we passed to
outer () in x, and the variable n located outside mal. Much more, it is even possible,
to increase the value of n with each call automatically.

You can create the multiplication table by 5 in a similar way.

>>> k=outer(5)
>>> k()
vorher 0
nachher 1
5
>>> k()
vorher 1
nachher 2
10
>>> k()
vorher 2
nachher 3
15

The inner function is a closure. Calling h or k without the function brackets also tells
us so.

>>> h
<closure>

In general, this is a function that is surrounded by another and has an extended
namespace, in which the non-local variables of the surrounding function are included
if they occur in the inner function. A local variable such as produkt in the scope of the
inner function is called bound (aka bound variable), a function that only contains
bound variables is a closed expression (aka closed term). Free variables (aka free
variables), i.e. non-local variables, are those that are defined outside of a function. A
function that contains free variables is an open term. Closure is a function that quasi

captures its non-local variables and thus turns the open term into a closed one,
hence the name closure.

What can we do with closures now? Now we have to draw a stick figure on the
gallows. This consists of 12 line elements. I have stored the commands for this as
strings in the elements of the list gallows, which are together with a counter variable
n, both as free objects, in the function initGalgen (). The inner function nextPart () is
also in the scope of initGalgen (). For nextPart, gallows and n are non-local, i.e. free
variables. With the return of the nextpart function by initGalgen (), the inner function
becomes a closure that remembers the captured gallows and n when called
repeatedly. Since n is also shown as nonlocal extra, this free variable can also be
changed with an external effect using nextPart (). We use this to implement an
automatic counting function. If we now assign the return of initGalgen to the variable
draw, we can automatically draw the next line of our picture with each call to draw ()
without having to worry about a sequence. Furthermore, drawing () tells us with the
return value False that the round has expired, what more do we want?

Note:
The ability to remember the value of a local variable can be achieved in C and the
Arduino IDE by declaring the variable as static in the function.

def initGalgen():

 n=0

 galgen=[

 "d.fill_rect(d.width-25,d.height-3,24,3,1)", # Boden

 "d.fill_rect(d.width-3,d.height//2,3,d.height//2,1)",

 "d.fill_rect(d.width-3,0,3,d.height//2,1)", # Mast

 "d.fill_rect(d.width-25,0,24,3,1)", # Balken

 "d.line(d.width-18,2,d.width-2,18,1)", # Stuetze

 "d.fill_rect(d.width-22,0,3,15,1)", # Strick

 "d.writeAt('O',13,1,False)", # Kopf

 "d.fill_rect(d.width-22,19,3,20,1)", # Body

 "d.line(d.width-22,18,d.width-26,33,1)", # Arm links

 "d.line(d.width-19,18,d.width-14,33,1)", # Arm rechts

 "d.line(d.width-22,37,d.width-26,50,1)", # Bein links

 "d.line(d.width-19,37,d.width-14,50,1)",]# Bein rechts

 def nextPart():

 nonlocal n

 exec(galgen[n])

 d.show()

 n+=1

 if n<=11:

 return True

 else:

 return False

 return nextPart

>>> zeichnen = initGalgen()
>>> zeichnen()
>>> zeichnen)() …

The command exec (gallows [n]) is, in itself, a piece of candy that you have to let
melt in your tongue. It enables the execution of MicroPython code that is available as

a string. Again just right for our project. However, this instruction also has an
increased risk potential, namely when the string can be entered by a user using an
input command or even via a web portal.

The creation of the search word list and the word selection from the same, including
repetition protection, is also packaged as a closure. As long as there are still new
words available, the latter is guaranteed by the numbers list by appending the
currently rolled index for the word list to numbers. Indices in this list are not used a
second time for as long as possible until the next cold start. You can very probably
already explain the structure and function of initSuperWord () yourself. But what
about the explanation of the following statement?

>>> initSuperWord()()
0
'Ouvertuere'

Let's now discuss the rest of the program, three more functions and the rather short
main program are still waiting for it.

The showString () function brings the term you are looking for in its development
stages onto the display during the game. The OLED class is used to control it, for
which there are some innovations compared to the previous version. There is a new
instance variable yOffset, which with the methods writeAt () and clearFT () shifts the
reproduction or deletion of the text lines by up to 4 pixel positions down. This creates
space for a cursor line at the top of the display. This cursor marks the selection
column for characters from the screen alphabet.

cursor (x, h, y = 0, cset = True, show = True)

The parameter list includes the text column number and the line width h (1..4). cset =
True sets the Corsor, False deletes it and show = True writes immediately into the
display.

The blinkDisplay (cnt, off = 0.2, on = 0.8) method does what its name says. With cnt
you indicate the number of flashes.

In order to understand why the output of the answer word looks so complicated, a
short detour into the main program is recommended. The search word s is read into a
list as a string from the "superwords.txt" file. Strings are immutable, which means that
individual characters of a string cannot simply be changed in the same way as
elements of a list.

>>> t="test"
>>> t[2]="x"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object doesn't support item assignment

There is a string method replace (), but it does not work in a position-specific manner,
but globally via the string. So you cannot replace individual characters only in a very
specific place.

But that is exactly what we have to do. Instead of separating the string at the desired
places, replacing the underscore with the character and putting the whole thing back
together into a new string, we are going a more memory-saving way. The solution
term is initially a string with the same number of "_" as there are characters in the
search word. This "_" must now be replaced by the selected letter in all places where
it appears in the search term. Therefore we convert the concept of the solution into a
byte array, the elements of which can be changed in a targeted manner, even in
several places.

 s = getSuperWord ()
 print ("Superword =", s)
 s = s.upper ()
 U = "_" * len (s)
 Ub = bytearray (U.encode ("utf8"))
 showString (Ub)

showString () does not take the solution string, but the equivalent byte array Ub. The
byte array Ub, which contains the ASCII codes of the characters, is derived from the
string U via the bytes object U.encode ("utf8"). Of course, these codes have to be
translated back into ASCII characters for output. This is what the function chr () does.
The process is complex but practical.

In addition, the term “solution” must be broken up to three lines. This happens in the
two for loops after the integer division of its number of characters and the remainder
modulo the line length.

In the getChar () function, we use the "*" and "#" keys to place the cursor in the
column from which one of the three characters is to be fetched. If one of the keys "A",
"B" or "C" is pressed, the function picks the character from the line string of the
alphabet and returns it. The function eval () supports us again in a tricky way.

A="ABCDEFGHI"

B="JKLMNOPQR"

C="STUVWXYZ "

……

 z=eval(taste)[cursorPos]

 d.writeAt(z,len(A)+1,ord(taste)-65)

 d.writeAt(" ",cursorPos,ord(taste)-65)

The code letter of the line, A, B or C is contented in the variable taste. eval () turns it
into the variable A, B or C and cursorPos points to the position in the string. The
character is output in front of the line identifier. The line number is cleverly derived
from the ASCII code of the line selection. The third line of code removes the
character from the alphabet selection for the sake of clarity.

The "D" key ends the entire game. With the delay parameter, we specifically slow
down the cursor movement, which makes positioning easier.

The checkChar (c = "") function takes the character we selected and checks whether
it appears in the search word string. If this is the case, we look for the positions there,
but replace the "_" in the byte array Ub with the ASCII code of the character and
return True. That means we can keep guessing. So that Ub can be changed within
the function, the byte array must be registered as global.

If we made a mistake, a point will be deducted and the next line will be entered in the
drawing. Our Closure nextPart () in initGallows (), which we assigned to the variable
gallows, does this reliably. If there are dashes left, gallows () returns True, otherwise
False.

gallows = initGalgen ()
……
return gallows ()

With the closure gallows () you can now surely see the advantage that this function
gives us. It is drawn and the status is updated, all automatically with the same call
gallows ().

The rest of the main program is quickly explained, in addition to around 20 trivial lines
of opening and closing credits, which are largely self-explanatory, there is not much
left. The game round continues until there is no "_" left in the solution array or the last
line of the hanged man is drawn.

 while ("_" in Ub) and result == True:
 character = getChar ()
 sleep (1)
 result = checkChar (character)

Oh yes - you better remove the following line in the outer while loop when the ESP32
is connected to the PC, because the print command outputs the search term in the
terminal.

 print ("Superword =", s)

Here the hangman.py program comes in one piece

File: hangman.py

Author: Jürgen Grzesina

Rev. 1.0

Stand 16.06.2021

**

Importgeschaeft

**

import os,sys # System- und Dateianweisungen

http://www.grzesina.de/az/spiele/hangman/hangman.py

import esp # nervige Systemmeldungen aus

esp.osdebug(None)

import gc # Platz fuer Variablen schaffen

gc.collect()

from oled import OLED

from ssd1306 import SSD1306_I2C

from machine import Pin,I2C

from keypad import KEYPAD_I2C,KEYPAD

from i2cbus import I2CBus

from mring import MAGIC_RING

from time import sleep

i2c=I2C(-1,scl=Pin(21),sda=Pin(22))

ibus=I2CBus(i2c)

d=OLED(i2c,128,64)

keyHwadr=0x20 # HWADR des Portexpanders fuer das 4x4-Pad

kp=KEYPAD_I2C(ibus,keyHwadr) # Hardware Objekt am I2C-Bus

k=KEYPAD(kp,d=d) # hardwareunabhaengige Methoden

mr=MAGIC_RING(neoPin=12,neoCnt=12)

d.yOffset=4

A="ABCDEFGHI"

B="JKLMNOPQR"

C="STUVWXYZ "

s="JOGILOEWSOBERFLASCHENELFVEREIN"

U="_"*len(s)

sb=bytearray(s.encode("utf8"))

Ub=bytearray(U.encode("utf8"))

alphaLength=12

*************** Funktionen declarieren *******************

def showString(q=Ub): # q ist ein Bytearray mit den

Stringcodes

 laenge=len(q)

 zeilen=laenge//alphaLength

 rest=laenge%alphaLength

 for line in range(zeilen):

 for pos in range(alphaLength):

d.writeAt(chr(q[line*alphaLength+pos]),pos,line+3,False)

 for pos in range(rest):

d.writeAt(chr(q[zeilen*alphaLength+pos]),pos,zeilen+3,False)

 d.show()

def getChar(delay=0.3):

 global cursorPos

 d.cursor(cursorPos,3,y=0,cset=True,show=True)

 d.clearFT(len(A)+1,0,len(A)+1,2)

 while 1:

 d.cursor(cursorPos,3,y=0,cset=True,show=True)

 taste=k.waitForKey(timeout=0,ASCII=True)

 sleep(delay)

 if taste=="*":

 d.cursor(cursorPos,3,y=0,cset=False,show=True)

 cursorPos=(cursorPos-1)%9

 if taste=="+":

 d.cursor(cursorPos,3,y=0,cset=False,show=True)

 cursorPos=(cursorPos+1)%9

 if taste in "ABC":

 z=eval(taste)[cursorPos]

 d.writeAt(z,len(A)+1,ord(taste)-65)

 d.writeAt(" ",cursorPos,ord(taste)-65)

 return z

 if taste=="\x0d":

 d.clearAll()

 d.writeAt("GAME OVER",3,2)

 sys.exit()

def checkChar(c=""):

 global Ub

 global punkte

 pos=[]

 if c in s:

 p=-1

 while 1:

 p=s.find(c,p+1)

 if p!=-1:

 Ub[p]=ord(c) # gefunden und ersetzt

 else:

 break # fertig mit c

 showString(q=Ub) # anzeige updaten

 return True

 else:

 punkte-=1

 return gallows()

def initGalgen():

 n=0

 galgen=[

 "d.fill_rect(d.width-25,d.height-3,24,3,1)", # Boden

 "d.fill_rect(d.width-3,d.height//2,3,d.height//2,1)",

 "d.fill_rect(d.width-3,0,3,d.height//2,1)", # Mast

 "d.fill_rect(d.width-25,0,24,3,1)", # Balken

 "d.line(d.width-18,2,d.width-2,18,1)", # Stuetze

 "d.fill_rect(d.width-22,0,3,15,1)", # Strick

 "d.writeAt('O',13,1,False)", # Kopf

 "d.fill_rect(d.width-22,19,3,20,1)", # Body

 "d.line(d.width-22,18,d.width-26,33,1)", # Arm links

 "d.line(d.width-19,18,d.width-14,33,1)", # Arm rechts

 "d.line(d.width-22,37,d.width-26,50,1)", # Bein links

 "d.line(d.width-19,37,d.width-14,50,1)", # Bein rechts

]

 def nextPart():

 nonlocal n

 exec(galgen[n])

 d.show()

 n+=1

 if n<=11:

 return True

 else:

 return False

 return nextPart

def initSuperWord():

 L=[]

 f=open("superwords.txt","r")

 for w in f:

 w = w.strip(" \r\n\t")

 L.append(w)

 f.close()

 numbers=[]

 #print(L)

 def findOne():

 nonlocal numbers

 guess = os.urandom(3)[2]%len(L)

 print(len(numbers))

 while guess in numbers and len(numbers)<len(L):

 guess = os.urandom(3)[2]%len(L)

 if len(numbers)<len(L):

 numbers.append(guess)

 return L[guess]

 return findOne

**************** Hauptprogramm **************************

showString(Ub)

games=0

gesamt=0

getSuperWord=initSuperWord()

while 1:

 punkte=12

 d.clearAll()

 d.writeAt(A+" A",0,0,False)

 d.writeAt(B+" B",0,1,False)

 d.writeAt(C+" C",0,2,True)

 cursorPos=0

 gallows=initGalgen()

 s=getSuperWord()

 print("Superword=",s)

 s=s.upper()

 U="_"*len(s)

 Ub=bytearray(U.encode("utf8"))

 showString(Ub)

 games+=1

 ergebnis=True

 while ("_" in Ub) and ergebnis==True:

 zeichen=getChar()

 print(zeichen)

 sleep(1)

 ergebnis=checkChar(zeichen)

 if ergebnis == True:

 gesamt+=punkte

 d.blinkDisplay(3,0.5,0.5)

 d.clearFT(0,0,12,2)

 d.writeAt("GEWONNEN!!!",0,0,False)

 d.writeAt("PUNKTE {}".format(punkte),0,1,False)

 else:

 d.clearFT(0,0,12,2)

 d.writeAt("NEW GAME -",0,0,False)

 d.writeAt("NEW LUCK!!",0,1,False)

 showString(q=sb)

 d.writeAt("TOTAL {}".format(gesamt),0,2)

 taste=k.waitForKey(0,ASCII=True)

 if taste=="\x0d":

 print("Game over")

 d.clearAll()

 d.writeAt("GAME OVER",3,2)

 break

The Software

Verwendete Software:
For flashing and programming the ESP32:
Thonny oder
µPyCraft

Verwendete Firmware:
MicropythonFirmware
Please use only stable versions.

MicroPython-Module und Programme
keypad.py Modul für Tastenfeld-Unterstützung
mcp.py Modul für Porterweiterungsbaustein MCP23017
i2cbus.py zum Austausch verschiedener Datentypen
oled.py die API zur Ansteuerung des OLED-Moduls
ssd1306.py der Hardwaretreiber für das Display
mring.py Muster-Treiber für Neopixel-Ringe
hangman.py Hauptprogramm

You can find detailed instructions for installing Thonny here. There is also a
description of how the Micropython firmware is burned to the ESP32.

MicroPython is an interpreter language. The main difference to the Arduino IDE,
where you always and exclusively flash entire programs, is that you only have to
flash the MicroPython firmware once on the ESP32 at the beginning so that the
controller understands MicroPython instructions. You can use Thonny, µPyCraft or
esptool.py for this. I have described the process for Thonny here

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. This is exactly what bothers me
about the Arduino IDE. You simply save an enormous amount of time if you can do
simple tests of the syntax and hardware through to trying out and refining functions
and entire program parts via the command line before you knit a program out of it.
For this purpose I also like to create small test programs over and over again. As a
kind of macro, they combine recurring commands. From such program fragments,
entire applications can develop. If the program is to start autonomously when the
controller is switched on, copy the program text into a newly created blank file. Save
this file under boot.py in the workspace and upload it to the ESP32 / ESP8266. The
program starts automatically the next time it is reset or switched on.

Programs are started manually from the current editor window in the Thonny IDE
using the F5 key. This is faster than clicking the start button or using the Run menu.
Only the modules used in the program must be in the flash of the ESP32.

If you later want to use the controller together with the Arduino IDE again, simply
flash the program in the usual way. However, the ESP32 / ESP8266 then forgot that
it ever spoke MicroPython. Conversely, any Espressif chip that contains a compiled
program from the Arduino IDE or the AT firmware or LUA can easily be provided with
the MicroPython firmware. The process must always be carried out as described here

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/spiele/hangman/keypad.py
http://www.grzesina.de/az/spiele/hangman/mcp.py
http://www.grzesina.de/az/spiele/hangman/i2cbus.py
http://www.grzesina.de/az/spiele/hangman/oled.py
http://www.grzesina.de/az/spiele/hangman/ssd1306.py
http://www.grzesina.de/az/spiele/hangman/mring.py
http://www.grzesina.de/az/spiele/hangman/hangman.py
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen

Circuit design

The circuit for "Ring Master 2" can also be used for Hangman without modification. If
you want to use a 5V power supply instead of the battery holder and the Li battery,
you have to connect the 5V to pin 20, Vin, of the ESP32. The 3.3V pin of the ESP32
then supplies the I2C parallel converter for the mi keyboardt.

*
Abbildung 3: ESP32-DEVKITC_V3_Pinout

The supply from a 4.5V block of alkaline cells can also be used. The connection also
goes to pin 20 of the ESP32. However, if you want to plan a neopixel ring, you should
derive a separate 3.3V supply for it. The 3.3V output of the ESP32 doesn't do all of
that. An AMS1117 3.3V power supply module for Raspberry Pi can be used as a
component. For supply voltages above 5V, an extra 5V regulator must then be used,
because the neopixel ring must not receive more than 5.3V. By the way, old PC
power supplies are very suitable for experimenting because they provide 3.3V and
12V in addition to 5V. This means that even hungry power guzzlers can be satisfied

https://www.az-delivery.de/products/ams1117-stromversorgungsmodul?_pos=3&_sid=34397a757&_ss=r

The following figure 4 shows the circuit diagram. You can download a better readable
copy in DIN A4 as a PDF file

Abbildung 4: Masterring2

The keyboard is connected in such a way that lines of the same color (or lines of the
same name) meet those of the MCP23017. So that you can do this with jumper
cables, the keyboard board must be provided with an 8-pin (angled) pin header. The
two outermost solder pins remain unconnected. The module with the MCP23017 also
has two connector strips, namely the two outer rows with the pins up towards the
component side, the inner row has a pin or socket strip downwards. If the circuit
board is now inserted into a breadboard, the labeled underside of the board points
upwards, which makes wiring much easier.

http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf
http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf
http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf

Abbildung 5: MCP23017_Unterseite

Abbildung 6: MCP23017_Bestückungsseite

Only one step is necessary for autonomous operation without a PC. If we move the
program text from hangman.py into the boot.py file and send it back up to the ESP32,
the controller automatically starts the game after a reset.

Have fun building, programming and playing.

Links zum Thema Spiele:

PDF in deutsch
PDF in english

Ringmaster2 Farbenraten mit Neopixelring
bandido.py der einarmige Bandit

http://www.grzesina.de/az/spiele/hangman/hangman_ger.pdf
http://www.grzesina.de/az/spiele/hangman/hangman_ger.pdf
http://www.grzesina.de/az/spiele/hangman/hangman_eng.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_ger.pdf

