

Abbildung 1: Bandit-Aufbau

Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

The games I've featured so far have been about strategy and reasoning. Of course, you
can just try it out until you are exhausted. Master chance reigns in this game, depending
on the programming more or less. Nevertheless, the use of hardware is again very similar
to that in the blogs for Ringmaster 1 and 2. So welcome to the presentation of the game

Bandit –
Games on the ESP32 in MicroPython

The OLED display from the previous blog series Ringmaster 2 is used again, as is the 4x4
key matrix. The first neopixel ring has two brothers. The 6-line OLED display required
more output information. The 16-key field replaces the numeric keyboard of the PC in the
field of the game setup.

What is this game about now? Perhaps you know the kind of slot machines as they are in
the casinos of Las Vegas or in German gambling dens? What are meant are things with
three or more rollers that can be set in motion by means of a lever and then either run
down themselves or can be stopped by pressing a button. Today we want to model the
model for such a "one-armed bandit", as they are called, with the ESP32 under

http://www.grzesina.de/az/spiele/bandit/bandit_ger.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_ger.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_eng.pdf

MicroPython. The program will run in an endless loop. As usual, I built in an emergency
brake so that you can specifically leave it during the development phase.

Using the emergency brake means terminating the running program precisely without an
immediate restart, which would be done by pressing the RST button on the ESP32 if the
program was started under the name boot.py. Exactly the latter is necessary if the
program is to start autonomously, i.e. without a connected PC. In the test phase,
cancellation is often only possible with an emergency button.

All objects, variable contents and function definitions created up to the point of cancellation
are retained for manual access via REPL, the MicroPython command line. In this way, for
example, functions and program parts can be tested interactively without having to re-
enter a whole series of imports and declarations, etc. each time, the previously started
program does that for us. The fact that such tests can be carried out easily via the REPL
command line is a decisive advantage of the MicroPython environment.

Hardware
A MicroPython program is created for "Bandit". That means we need a MicroPython-
capable controller. The choice fell on an ESP32, because it should not be a large screen
like the Raspi, but only an OLED display. The ESP8266-12F was eliminated due to
insufficient RAM memory, it lacks a good 1200 bytes. But not only that, the ESP8266
decided to have too few GPIO connections for this use.

A 4x4 matrix keypad is used as the keyboard. The OLED display is operated via the I2C
bus, which also supplies the keyboard connection. There is a built-in module in the
MicroPython firmware for the neopixel ring, which makes programming child's play. Below
are a few comments on how the ring works. Its current consumption is around 20mA.

1 ESP32 NodeMCU Module WLAN WiFi Development Board mit CP2102 oder ähnlich

1 0,96 Zoll OLED I2C Display 128 x 64 Pixel - 1x OLED

1 4x4 Matrix Keypad Tastatur - 1x Keypad

1 MCP23017 Serielles Interface Modul

1 Battery Expansion Shield 18650 V3 inkl. USB Kabel

1 Li-Akku Typ 18650

3 LED Ring 5V RGB WS2812B 12-Bit 37mm oder ähnlich

3 KY-004 Taster Modul Sensor Taste Kopf Schalter oder
ein TTP224 4-Kanal Digitaler Berührungssensor Kapazitiver Touch Modul

The circuit for "Bandit" is basically taken from the episode "Ringmaster 2". Three neopixel
rings are required for the "play rollers". Rolling is simulated by eight different LED patterns.

If you want to use a 5V power supply instead of the battery holder and the Li battery, you
have to connect the 5V to pin 20, Vin, of the ESP32. The 3.3V pin of the ESP32 then
supplies the keyboard's I2C parallel converter, but cannot feed the three neopixel rings. In
order to provide their power requirements, a separate 3.3V voltage source is required,
which you can derive from the 5V using a controller module. This regulator is not included
in the parts list above

https://www.az-delivery.de/products/esp32-developmentboard?_pos=3&_sid=854ce9b38&_ss=r
https://www.az-delivery.de/products/0-96zolldisplay?variant=26462805705
https://www.az-delivery.de/products/4x4-matrix-numpad?variant=12239800074336
https://www.az-delivery.de/products/mcp23017-serielles-interface-modul?variant=32344272568416
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/rgb-led-ring-ws2812-mit-12-rgb-leds-5v-fuer-arduino?variant=18912609108064
https://www.az-delivery.de/products/button-modul?_pos=1&_sid=282b2ebaf&_ss=r
https://www.az-delivery.de/products/az-delivery-keypad-ttp224-1x4-kapazitiv?variant=12239788834912
http://www.grzesina.de/az/spiele/masterring2/ringmaster2.pdf

*
Abbildung 2: ESP32-DEVKITC_V3_Pinout

The supply from a 4.5V block of alkaline cells would be sufficient for the controller board,
but unfortunately the display is not satisfied with that. An extra 5V regulator must be used
for supply voltages above 5V, because the neopixel ring must not receive more than 5.3V.

Tip:
Old PC power supplies are very suitable for experimenting because they provide 3.3V and
12V in addition to 5V.

The following figure shows the circuit diagram. You can download a more readable copy in
DIN A4 as a PDF file. The three buttons can possibly be replaced by a capacitive touch
module TTP224 4-channel digital touch sensor with 4 pads, which is only suitable for
narrow fingers

http://www.grzesina.de/az/spiele/bandit/Bandit_Schaltung.pdf
https://www.az-delivery.de/products/az-delivery-keypad-ttp224-1x4-kapazitiv?variant=12239788834912

Abbildung 3: Bandit_Schaltung

12 Neopixel LEDs of type WS2812B are installed on the LED ring. Power is supplied in
parallel. The data line runs serially from one LED unit to the next and represents a special
type of bus. Each unit contains an RGB LED and a controller that reacts to the first
incoming 24-bit sequence of color information. The signals are generated by a
microcontroller such as the ESP32. 24 bits are generated for each neopixel unit (8 each
for green, red and blue). The duration for one bit is 1.25µs +/- 0.150µs, the transmission
frequency is thus approx. 800kHz. For a 1 the line is 0.8µs on HIGH and 0.45µs on LOW,
a 0 is coded with 0.4µs HIGH and 0.85µs LOW. The first incoming 24 bits are processed
by each WS2812B unit, all of the following bits are amplified and passed on to the next
unit. The signal sequence from the microcontroller is therefore 24 bits shorter from LED to
LED. In contrast to a conventional data bus, the WS2812B units do not receive the data
simultaneously, but with a time delay of 24 bits times 1.25 µs / bit = 30 µs.

A frame buffer in the RAM of the ESP32 temporarily stores the color values (3 x 256 =
16.7 million), and the NeoPixel.write () command sends the information over the "bus" that
is attached to a GPIO output (in our case GPIO13). The sequence of colors on the
MicroPython module is red-green-blue, the sequence on the bus is green - red - blue.
Several rings can be cascaded just like individual LEDs by connecting the input of the next
ring to the output of the previous one. However, we will operate the three rings on three
different GPIOs because the addressing functions that already exist make this easier.

The connections on the ring are made at the rear, preferably using thin strands. In order to
protect the eyes, I use a maximum brightness level of 32. The total current consumption of
the ring is less than 20mA on average. The easiest way to determine the components for

http://www.grzesina.de/az/spiele/bandit/Bandit_Schaltung.pdf

the mixed colors yourself is by experiment using REPL. The brightness of the individual
color channels is quite different. The codes in the tuples for mixed colors will therefore
rarely have the same value.

>>> from neopixel import NeoPixel
>>> neoPin = Pin (13)
>>> neoCnt = 12
>>> np = NeoPixel (neoPin, neoCnt)
>>> np [0] = (32,16,0)
>>> np.write ()

For comparison, the last two commands are repeated with a different RGB code until the
color rendering is correct. The values given here produce "yellow".

At full luminosity, the LED units suck 50mA each, which requires a good constant voltage
source and cooling of the ring.

Abbildung 4: LED-Ring_vorn

The Software
Used Software:
For flashing and programming the ESP32:
Thonny oder
µPyCraft

Used Firmware:
MicropythonFirmware

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin

MicroPython-Module und Programme
keypad.py Modul für Tastenfeld-Unterstützung
mcp.py Modul für Porterweiterungsbaustein MCP23017
i2cbus.py zum Austausch verschiedener Datentypen
oled.py die API zur Ansteuerung des OLED-Moduls
ssd1306.py der Hardwaretreiber für das Display
mring.py Muster-Treiber für Neopixel-Ringe
bandido.py Hauptprogramm

Tricks and Infos on MicroPython
MicroPython is an interpreter language. The main difference to the Arduino IDE, where
you always and exclusively flash entire programs, is that you only have to flash the
MicroPython firmware once on the ESP32 at the beginning so that the controller
understands MicroPython instructions. You can use Thonny, µPyCraft or esptool.py for
this. I have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first having
to compile and transfer an entire program. This is exactly what bothers me about the
Arduino IDE. You simply save an enormous amount of time if you can do simple tests of
the syntax and hardware through to trying out and refining functions and entire program
parts via the command line before you knit a program out of it. For this purpose I also like
to create small test programs over and over again. As a kind of macro, they combine
recurring commands. From such program fragments, entire applications can develop. If
the program is to start autonomously when the controller is switched on, copy the program
text into a newly created blank file. Save this file under boot.py in the workspace and
upload it to the ESP32 / ESP8266. The program starts automatically the next time it is
reset or switched on.

Programs are started manually from the current editor window in the Thonny IDE using the
F5 key. This is faster than clicking the start button or using the Run menu. Only the
modules used in the program must be in the flash of the ESP32.

If you later want to use the controller together with the Arduino IDE again, simply flash the
program in the usual way. However, the ESP32 / ESP8266 then forgot that it ever spoke
MicroPython. Conversely, any Espressif chip that contains a compiled program from the
Arduino IDE or the AT firmware or LUA can easily be provided with the MicroPython
firmware. The process must always be carried out as described here.

I explained the data structures used in the program for color management in detail in the
Ringmaster 1 article. How the query of the keyboard matrix works with the help of the
keypad.py module is shown here for two different approaches. In addition to the
information on the connection options, you will also find a detailed description of the
classes contained in the module.

In order for the bandido.py program to be executed, all modules listed above must be
uploaded to the ESP32's flash memory. These are the files ssd1306.py, i2cbus.py,

http://www.grzesina.de/az/spiele/ringmaster2/keypad.py
http://www.grzesina.de/az/spiele/ringmaster2/mcp.py
http://www.grzesina.de/az/spiele/ringmaster2/i2cbus.py
http://www.grzesina.de/az/spiele/ringmaster2/oled.py
http://www.grzesina.de/az/spiele/ringmaster2/ssd1306.py
http://www.grzesina.de/az/spiele/bandit/mring.py
http://www.grzesina.de/az/spiele/bandit/bandido.py
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen
http://www.grzesina.de/az/spiele/masterring/masterring_eng.pdf
http://www.grzesina.de/az/das_modul_keypad.html

oled.py, keypad.py, mring.py and mcp.py. When that is done, we can start the program
bandido.py in the editor window with F5 - provided the hardware is assembled and the
ESP32 is connected to the PC.

Here is the listing of the program

bandido.py

Author: Juergen Grzesina

Revision: 1.0

Stand: 08.06.2021

Importgeschaeft

import os,sys # System- und Dateianweisungen

import esp # nervige Systemmeldungen aus

esp.osdebug(None)

import gc # Platz fuer Variablen schaffen

gc.collect()

from machine import Pin, I2C

#from neopixel import NeoPixel

from mring import MAGIC_RING

from keypad import KEYPAD_I2C, KEYPAD

from i2cbus import I2CBus

from time import sleep, time, ticks_ms

#from lcd import LCD

#from hd44780u import HD44780U, PCF8574U_I2C

from oled import OLED

#from button import BUTTON32,BUTTONS

***************** Objekte declarieren ******************

Pins fuer parallelen Anschluss des 4x4-Pads

i2c=I2C(-1,scl=Pin(21),sda=Pin(22),freq=400000)

ibus=I2CBus(i2c)

#disp=LCD(i2c,adr=0x27,cols=16,lines=2) # LCDPad am I2C-Bus

disp=OLED(i2c,128,64)

keyHwadr=0x20 # HWADR des Portexpanders fuer das 4x4-Pad

kp=KEYPAD_I2C(ibus,keyHwadr) # Hardware Objekt am I2C-Bus

#cols=(15,5,18,19)

#rows=(13,12,14,27)

#kp=KEYPAD_P(rows,cols) # HW-objekt mit Parallel-Anschluss

#kp=KEYPAD_LCD(pin=35) # LCD-Keypad-Tastatur an ADC35

k=KEYPAD(kp,d=disp) # hardwareunabhaengige Methoden

rstNbr=25

#rst=BUTTON32(rstNbr,True,"RST")

ctrl=Pin(rstNbr,Pin.IN,Pin.PULL_UP)

#t=BUTTONS() # Methoden fuer Taster bereitstellen

leftPinNbr=13

midPinNbr=12

rightPinNbr=14

leftStopNbr=15

midStopNbr=5

rightStopNbr=18

leftStop=Pin(leftStopNbr,Pin.IN,Pin.PULL_UP) #,Pin.PULL_UP

midStop=Pin(midStopNbr,Pin.IN,Pin.PULL_UP)

rightStop=Pin(rightStopNbr,Pin.IN,Pin.PULL_UP)

lPos=0; mPos=0; rPos=0

neoCnt=12

left=MAGIC_RING(leftPinNbr,neoCnt)

mid=MAGIC_RING(midPinNbr,neoCnt)

right=MAGIC_RING(rightPinNbr,neoCnt)

l_stoped,m_stoped,r_stoped=False,False,False

games=0

palette= {

 "red":(32,0,0),

 "green":(0,16,0),

 "blue":(0,0,16),

 "yellow":(32,16,0),

 "magenta":(16,0,8),

 "cyan":(0,16,8),

 "white":(12,12,12),

 "black":(0,0,0)

 }

color=[

 "red",

 "green",

 "blue",

 "yellow",

 "magenta",

 "cyan",

 "white",

 "black",

]

colors=len(color)

red=0; green=1; blue=2; yellow=3

magenta=4; cyan=5; white=6; black=7

muster=[

 [blue,yellow,black,blue,yellow,black,blue,yellow,\

 black,blue,yellow,black],

 [green,red,black,red,green,black,green,red,\

 black,red,green,black],

 [yellow,black,magenta,yellow,black,yellow,yellow,black,\

 magenta,yellow,black,yellow],

 [red,red,red,black,black,black,blue,blue,blue,\

 blue,black,black,black],

 [red,black,yellow,black,green,black,red,black,\

 yellow,black,green,black],

 [red,yellow,green,blue,black,black,red,yellow,\

 green,blue,black,black],

 [red,yellow,green,cyan,blue,magenta,black,black,\

 black,black,black,black],

 [red,yellow,green,cyan,blue,magenta,red,yellow,\

 green,cyan,blue,magenta],

]

anzahlMuster=len(muster)

**************** Function Definitions *****************

def clearKringels(*positionen):

 for p in positionen: eval(p +".clearKringel()")

def initGame():

 clearKringels("left","mid","right")

 mid.rainbowKringel([red,yellow,green,cyan,blue,magenta, \

 red,yellow,green,cyan,blue,magenta],\

 cnt=2,delay=0.1)

 mid.dimKringel(delay=0.1,stufen=8,down=True)

 mid.clearKringel()

 disp.clearAll()

def writeAsset(name,asset):

 try:

 file=open(name,"w")

 file.write(str(asset)+"\n")

 file.close()

 except:

 disp.clearAll()

 disp.writeAt(name+" asset",0,1)

 disp.writeAt("not written!",0,2)

 k.waitForTaste()

def readAsset(name):

 try:

 file=open(name,"r")

 asset=int(file.readline())

 file.close()

 return asset

 except:

 if name=="machine.txt":

 return 1000

 else:

 return 0

def tellState():

 disp.clearAll()

 disp.writeAt("GOOD BYE",0,0,False)

 disp.writeAt("GAME OVER",0,1,False)

 disp.writeAt("Your total",0,2,False)

 disp.writeAt("investment:{}".format(totalInvestment)\

 ,0,3,False)

 disp.writeAt("{} game(s)".format(totalGames),0,4,False)

 disp.writeAt("Total gain:{}".format(totalGain),0,5)

 print("Machine gained:",machineGain)

 print("Machine Asset:",machineAsset)

********************** Main Loop **********************

disp.clearAll()

disp.writeAt("THE ONEARMED",0,0)

disp.writeAt("BANDIT",0,1)

disp.writeAt("WELLCOME",0,2)

clearKringels("left","mid","right")

sleep(2)

myAsset=readAsset("myAsset.txt")

machineAsset=readAsset("machine.txt")

print("Maschinenkapital",machineAsset)

delay=0.03

random=True

totalInvestment=0

totalGain=0

totalGames=0

machineGain=0

while 1:

 # Guthaben pruefen

 if myAsset<20:

 disp.clearAll()

 disp.writeAt("ENTER YOUR",0,0,False)

 disp.writeAt("INVESTMENT",0,1,False)

 disp.writeAt("(20C per Game)",0,2,False)

 disp.writeAt("TO ABORT PRESS",0,3,False)

 disp.writeAt("KEYS # D",0,4,False)

 x=disp.writeAt("ENTER>>> ",0,5)

 amount=k.padInput(xp=x,yp=5)

 if amount=="+":

 writeAsset("machine.txt",machineAsset)

 writeAsset("myAsset.txt",myAsset)

 tellState()

 sys.exit()

 myAsset+=int(amount)

 totalInvestment+=int(amount)

 disp.clearAll()

 disp.writeAt("Your asset:{}".format(myAsset),0,0)

 disp.writeAt("TO START GAME",0,1)

 disp.writeAt("PRESS * KEY",0,2)

 disp.writeAt("TO ABORT PRESS # KEY",0,3)

 taste=k.waitForKey(timeout=0, ASCII=True)

 if taste=="+":

 writeAsset("machine.txt",machineAsset)

 writeAsset("myAsset.txt",myAsset)

 tellState()

 print("Machine gained",machineGain)

 sys.exit()

 #

 myAsset-=20

 machineAsset+=20

 machineGain+=20

 l_stoped,m_stoped,r_stoped=False,False,False

 lauf=0

 maxLauf=240

 totalGames+=1

 while not(l_stoped and m_stoped and r_stoped) and \

 lauf<=maxLauf:

 for i in range (len(muster)):

 if random:

 l,m,r=os.urandom(3)

 l,m,r=l%anzahlMuster,m%anzahlMuster,r%anzahlMuster

 else:

 l,m,r=i,(i+3)%anzahlMuster,(i+5)%anzahlMuster

 if not l_stoped:

 left.kringel=muster[l]

 left.lightKringel()

 lPos=l

 if leftStop.value()==0:

 l_stoped=True

 if not m_stoped:

 mid.kringel=muster[m]

 mid.lightKringel()

 mPos=m

 if midStop.value()==0:

 m_stoped=True

 if not r_stoped:

 right.kringel=muster[r]

 right.lightKringel()

 rPos=r

 if rightStop.value()==0:

 r_stoped=True

 sleep(delay)

 lauf+=1

 # Gewinnermittlung

 gewinn=0

 if mPos==lPos or mPos==rPos or lPos==rPos:

 if mPos<=3 or lPos<=3:

 gewinn=10

 elif mPos<=6 or lPos<=6:

 gewinn=20

 else:

 gewinn=30

 if mPos==lPos and mPos==rPos and lPos==rPos:

 if mPos<=5 or lPos<=5:

 gewinn=50

 else:

 gewinn=100

 if gewinn > 0:

 machineAsset-=gewinn

 machineGain-=gewinn

 myAsset+=gewinn

 totalGain+=gewinn

 disp.clearAll()

 disp.writeAt("YOUR GAIN:{}".format(gewinn),0,0)

 else:

 disp.clearAll()

 disp.writeAt("SORRY",0,1)

 disp.writeAt("MORE LUCK",0,2)

 disp.writeAt("NEXT TIME!!!",0,3)

 sleep(3)

The main program (while loop) does not even comprise 100 program lines despite
extensive output activities. This is because different modules take care of the various
frame jobs such as display control, key query, I2C bus operation and, with mring.py, the
display of animated patterns on the neopixel rings. I created the latter module because
there is now a nice collection of control functions. Functions that only have to do with the
neopixel ring have been combined as methods in the MAGIC_RING class. In detail these
are:

 def lightKringel (self):
 def clearKringel (self):
 def clearRing (self):
 def rainbowKringel (self, colList, cnt = 3, delay = 0.3):
 def faecherKringel (self, colList, percent, delay = 0.1, hemi = 3, \
 dim = False, updown = 1):
 def starryNightKringel (self, delay = 5, duration = 100):
 def dimKringel (self, delay = 0.1, steps = 8, down = True):
 def boostKringel (self, factor = 1.3):
 def blinkKringel (self, on = 0.3, off = 0.7, cnt = 1, remain = False):
 def randomKringel (self):
 def ringGraphKringel (self, colList, size):
 def showStatus (self, stat):

Each instance of this class also contains a complete set of color definitions and an array
called kringel, which holds the color numbers of all pixels in the ring. This makes it
possible to adapt the data for each ring individually. On the other hand, rings can also be
cascaded without problems by specifying a higher number of pixels when instantiating. Of
course, the selection must then be made by the programmer by addressing the pixels of a
special ring. The best thing to do is to try out the individual methods yourself to explore the
possibilities.

The stakes and winnings are added up and saved in a file when the game is over so that
the data is available the next time you switch on the game. The functions writeAsset () and
readAsset () show how this works.

How is the game play or how does the program work?

The greeting is followed by the deletion of the neopixel rings. After 2 seconds the program
tries to read in the last scores for the machine account and for the player account. If the
files do not yet exist or if an error occurs when accessing them, the machine, i.e. the
ESP32, receives a credit of 100 euros. The player starts at 0. A few variables are
initialized and then we are already in the main loop.

If the player's balance is less than 20 cents, he will be asked to deposit any amount. This
is done using the keypad. The entry is completed with "D". If a "#" is entered instead of a
number, the game ends. The account balances are saved. The same thing happens with
the next step if, instead of pulling the lever of the "one-armed man", i.e. pressing the "*"
key, you catch the "#" key.

After the start of the game round, the "wheels" with their 8 symbols run 240: 8 = 30 rounds
and then come to a stop at the latest. There are two modes for the process, one purely
randomly controlled and one in which the pattern index is increased by 1 for the first
"wheel", by 3 for the second "wheel" and by 5 for the third "wheel". With both methods, the
target index is always trimmed to the range 0 to 7 by modulo calculation.

Here are two examples:

any ring
Random number about 237
Index = 237% 8 = 5, because 237: 8 = 29 remainder 5

Ring 2:
last index: 4
(4 + 3)% 8 = 7
Ring 3:
last index: 6
(6 + 5)% 8 = 11% 8 = 3

While the "wheels" are running, you can stop the run with the respective button. The The
game round is over when either all "wheels" have stopped or the maximum running time
has been reached.

How likely is the pattern to match on two or even three "wheels"? No prediction can be
made when stopping with the keys. When using os.urandom (), the values are almost
exactly evenly distributed for a few hundred throws. Which does not mean that two or even
three identical values cannot be thrown in the range 0 to 7 every now and then. A
theoretical hit rate of approx. 30% predicts the following small program for 240 drawings.

import os,sys

i1,i2,i3=2,4,6

a1,a2,a3=1,3,6

s=0

runden=240

games=100

for m in range(games):

 for n in range(runden):

 w=os.urandom(3)

 i1=(w[0])%8

 i2=(w[1])%8

 i3=(w[2])%8

 if (i1 == i2 or i2==i3) and n==(runden - 1):

 print (m,i1,i2,i3)

 s+=1

print (s, "{}%".format(s/games*100))

When using the ring addition modulo 8, you can exert a certain influence on the chances
of winning through the summands and the number of runs as well as the starting values for
the sample codes. In the following case, 1000 rounds theoretically result in a total of 250
triplets. If you let the game run down without stopping a ring, you may still not get any hits
if the game automatically stops after 240 updates of the indices. The following small
programs can tell you a lot about the connections. Just adjust the various parameters and
look at the entire output in the terminal window.

i1,i2,i3=4,4,4

a1,a2,a3=1,3,4

s=0

runden=240

for n in range(runden):

 i1=(i1+a1)%8

 i2=(i2+a2)%8

 i3=(i3+a3)%8

 if i1 == i2 or i2==i3:

 print (n,i1,i2,i3)

 s+=1

print (s, "{}%".format(s/runden*100))

You can use these insights to expand settings for the game. The strategy now used in the
game corresponds to the following test program and does not provide a single match in
1000 draws.

i1,i2,i3=0,0,0

a1,a2,a3=1,3,5

s=0

runden=1000

for n in range(runden):

 i1=(n+a1)%8

 i2=(n+a2)%8

 i3=(n+a3)%8

 if i1 == i2 or i2==i3:

 print (n,i1,i2,i3)

 s+=1

print (s, "{}%".format(s/runden*100))

To make things even more interesting, in addition to the matches, we can also weight the
round results for the profit, as was done in the program. Here it is determined in which
area a match brings which profit.

One thing becomes clear in any case, the bottom line is that the slot machine is always the
winner, just like in real life. The display and the terminal window provide information about
this after the game has ended. It's good that we are all about virtual cash, there is nothing
to lose - just have fun. And by the way, you will learn programming with MicroPython.

Have fun tinkering, programming and playing!

Links zur Blogreihe:
PDF in deutsch
PDF in english
Wie arbeitet die Abfrage einer Tastaturmatrix?
Thonny – Installation und Einführung
Farben-Raten mit Ringmaster1
Ringmaster2 und Codenumber
mring.py driver for Neopixel rings

http://www.grzesina.de/az/spiele/bandit/bandit_ger.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_ger.pdf
http://www.grzesina.de/az/spiele/bandit/bandit_eng.pdf
http://www.grzesina.de/az/das_modul_keypad.html
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html
http://www.grzesina.de/az/spiele/masterring/masterring_ger.pdf
http://www.grzesina.de/az/spiele/ringmaster2/ringmaster2_ger.pdf
http://www.grzesina.de/az/spiele/bandit/mring.py

