

Abbildung 1: Wattmeter_Aufbau

They sneak into the room secretly and unrecognized. They can be welcome, but they
can also appear superfluous. In summer we prefer to keep them outside, in winter we
are happy to have a certain amount of them in the room. We are talking about
calories, or to put it in the current physical language, joules (pronounced: "dschuul").
Welcome to the Energy Detectives Club. Today we are

On the trail of calories

A joule (= 4.16 Cal) is the unit of energy and can be expressed as a derived quantity,
depending on the area of application, by other units, electrical 1J = 1VAs, mechanical
1J = 1Nm. Today we are going to make a simple circuit with which we can observe
and measure the thermal energy on its way from here to there. Because the total
energy in a room or a vessel is difficult to determine because too many parameters
play a role. But on the other hand, we can record energy that is on the move, through
radiation or thermal contact, quite well. In order for energy to be measurable for us,
we need a device that we can insert into the path that the energy takes. For a better
understanding one can take a look at electricity and make a comparison.

Electric charges (electrons) moving through a conductor are referred to as electric
current. If they collect on a surface, we speak of their charge or charge Q for short.
The total charge Q that sits on a body cannot be measured directly, but the current I
and the time t can be measured while the charges are through hike up or down a
ladder to the surface. We measure the charge currents with an ammeter, which we
insert directly into the circuit, the path taken by the charges; it records the amount of

charge Q that passes through the conductor cross-section A at the measuring point
per unit of time.

Abbildung 2: Definition Stromstärke

Abbildung 3: Einheit Stromstärke

Today we will build a device to measure energy flows; it records the amount of
energy in joules that passes through cross-section A of the measuring point per unit
of time. This results in a new size. In general, the quotient of energy or work by time
is defined as power P.

Abbildung 4: Definition Wärmestrom - Wärmeleistung

Abbildung 5: Einheit Wärmestrom – Wärmeleistung

And just as an ammeter is built into a circuit, we will inject our thermal watt meter into
energy flows. If we then measure the time, we can calculate how many joules were
emitted or absorbed by a body in total. Another analog would be the swimming pool,
the amount of water, the supply line and the water meter.

What we need for the wattmeter

Die Hardware

1* 0,91 Zoll OLED I2C Display 128 x 32 Pixel

1* NodeMCU Lua Amica Modul V2 ESP8266 ESP-12F

1 TEC1-12706 Thermoelektischer Wandler
Das 5-er-Bundel ist sehr günstig in Hinblick auf den Folgebeitrag

1 KY-004 Taster Modul Sensor Taste 3er Bundle
ist günstiger als 2 Einzeltaster

1 Mini Breadboard 400 Pin mit 4 Stromschienen für Jumper Kabel
5er-Bundel ist günstiger als Einzelstück oder 3er-Bundle

1 DS18B20 digitaler Temperatursensor TO92-55°C - +125°C
oder besser gleich mit für den Folgebeitrag bestellen
1M Kabel DS18B20 digitaler Edelstahl Temperatursensor
Temperaturfühler, wasserdicht

3 Widerstand 10kOhm

div. Jumperkabel

1 USB-A-Stecker auf Micro-Stecker

Reste von Stiftreihen für DS18B20 und Peltier-Element

1 Netzteil mit 5..15V / >=3A
zum Beispiel den DC-DC-Wandler aus der vorigen Blogfolge

In addition to the hardware, some software is needed. On the one hand the
MicroPython firmware for the ESP8266 in general and of course the programs to
calibrate the controller as a wattmeter and then to measure heat flows in particular.

Our device will be able to record heat flows with a resolution of approx. 25mW. This
could be improved by using a preamplifier or an ESP32.

Software

Used Software:

Fürs Flashen und die Programmierung des ESP32:
Thonny oder
µPyCraft
micropython-font-to-py

https://www.az-delivery.de/products/0-91-zoll-i2c-oled-display?variant=6127765028891
https://www.az-delivery.de/products/nodemcu-lua-amica-v2-modul-mit-esp8266-12e-unverloetet?variant=18287239397472
https://www.az-delivery.de/products/tec1-12706-thermoelektischer-wandler?variant=32344405016672
https://www.az-delivery.de/products/button-modul?variant=8175996076128
https://www.az-delivery.de/products/mini-breadboard?variant=12236752093280
https://www.az-delivery.de/products/5ersetds18b20?_pos=2&_sid=474d2cd61&_ss=r
https://www.az-delivery.de/products/2xds18b20wasserdicht?variant=27601701193
https://www.az-delivery.de/products/2xds18b20wasserdicht?variant=27601701193
http://www.grzesina.de/az/peltier/buckconverter/Netzteil_8A_ger.pdf
https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://github.com/peterhinch/micropython-font-to-py

Verwendete Firmware:

MicropythonFirmware
Bitte eine Stable-Version aussuchen

MicroPython-Programme

Module:
button.py zur Bedienung von Tasten
charset.py die Steuerklasse für größere Zeichensätze
geometer_24.py stellt den Zeichensatz geometer.ttf in Punkt24 auf dem OLED dar
oled.py, die Klasse OLED enthält Methoden zur bequemen Ansteuerung von OLED-
Displays
ssd1306.py ist der Low-Level Treiber für das verwendete Display
Anwendungen:
eichen.py zur Ermittlung der Betriebsdaten des Peltierelements
wattmeter.py Messprogramm zur Erfassung von Wärmeströmen
_font2py.rar Paket zur Erzeugung von Pixelzeichensätzen aus TTF-Fonts

MicroPython - Language - Modules and Programs

You can find detailed instructions for installing Thonny here. There is also a description
of how the Micropython firmware is burned onto the ESP chip

MicroPython is an interpreter language. The main difference to the Arduino IDE,
where you always and exclusively flash entire programs, is that you only have to
flash the MicroPython firmware once at the beginning on the ESP32 before the
controller understands MicroPython instructions. You can use Thonny, µPyCraft or
esptool.py for this. I have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. This is exactly what bothers me
about the Arduino IDE. You simply save an enormous amount of time if you can do
simple tests of the syntax and hardware through to trying out and refining functions
and entire program parts via the command line before you knit a program out of it.
For this purpose I also like to create small test programs over and over again. As a
kind of macro, they combine recurring commands. From such program fragments,
entire applications can develop.

Autostart

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/peltier/joulemeter/button.py
http://www.grzesina.de/az/peltier/joulemeter/charset.py
http://www.grzesina.de/az/peltier/joulemeter/geometer_24.py
http://www.grzesina.de/az/peltier/joulemeter/oled.py
http://www.grzesina.de/az/peltier/joulemeter/ssd1306.py
http://www.grzesina.de/az/peltier/joulemeter/eichen.py
http://www.grzesina.de/az/peltier/joulemeter/wattmeter.py
http://www.grzesina.de/az/peltier/joulemeter/font2py.rar
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen
http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen

Testing programs

Programs are started manually from the current editor window in the Thonny IDE
using the F5 key. This is faster than clicking the start button or using the Run menu.
Only the modules used in the program must be in the flash of the ESP8266.

In between, Arduino IDE again?

If you later want to use the controller together with the Arduino IDE again, simply
flash the program in the usual way. However, the ESP32 / ESP8266 then forgot that
it ever spoke MicroPython. Conversely, every Espressif chip that contains a compiled
program from the Arduino IDE or the AT firmware or LUA or ... can easily be provided
with the MicroPython firmware. The process is always as described here.

http://grzesina.eu/az/Die_Entwicklungsumgebung_Thonny.html#flashen

Structure of the circuit and the periphery

We mentioned earlier that our thermal wattmeter can be compared with an ammeter
from the electrical sector. The way of working is also directly comparable. The ohmic
resistance formula states that an electric current flows through a resistor when a
voltage is applied. A digital ammeter uses the reverse of this theorem. A voltage
drops across a resistor when a current flows through it.

Abbildung 6: Spannung am Widerstand

This voltage is directly proportional to the current strength. The resistance in the
circuit is therefore the current intensity sensor, which makes the current intensity
measurable indirectly via the voltage. The measuring device has the task of
converting the voltage at the sensor into a current value based on knowledge of the
resistance value and displaying it as such.

Our heat flow meter works the same way, only with a different effect, a different
sensor. We use the Seebeck effect of a thermoelectric converter, also known as the
Peltier element. These components are primarily used to convert electrical energy
into a heat flow via the Peltier effect. We use this in the third post for the beverage
cooler. This Peltier effect can also be reversed, resulting in the Seebeck effect.

If a heat flow is conducted through a Peltier element, a voltage is generated at its
electrical connections that is directly proportional to the temperature difference on the
surfaces and thus also to the heat flow. We use this Seebeck effect for our heat flow
meter. The physical unit of a heat flow results from heat work / time as heat output. It
applies:

Abbildung 7: Thermospannung

The idea for this came from a contribution by Werner B. Schneider and H. Dittmann,
published in Volume 4, Paths in Physics Didactics, Erlangen 1998. There it is also
described how the calibration process can take place, because first we have to get
the k from the Determine equation (I) so that the ESP8266 can then convert the
voltage into a heat flow and display it.

But first we need a circuit and a few more information about its environment. You can
download the circuit diagram as a PDF file in DIN A4.

http://www.grzesina.de/az/peltier/joulemeter/wattmeter_schematic.pdf

Abbildung 8: Wattmeter_Schematic

The heat conduction equation behind the Seebeck formula primarily uses the
temperature difference between the two sides of the Peltier element instead of the
thermal voltage.

Abbildung 9: Wärmeleitungsgleichung

The thermal voltage itself is also directly proportional to the temperature difference.

Abbildung 10:Thermospannung und Temperaturdifferenz

β and λ are material constants. With the area A and the thickness l of the Peltier
element and by rearranging and combining the constants, equation (I) is finally
obtained.

 In our setup, we measure
the temperatures of two
aluminum cuboids, they
represent our heat
reservoirs, which we bring to
temperatures slightly above
and below room
temperature at the
beginning of the calibration.
This prevents excessive
heat exchange with the
environment, which would
lead to measurement errors.
In addition, we wrap the two
bodies between which the
Peltier element lies in foam
padding. The dowels secure
the cover and thus also the
upper cuboid and the
thermocouple against
slipping.

Abbildung 12: Peltierelement mit
DS18B20-Fühlern

The insulating material is
made of rigid foam. The
depressions were made
with a Proxxon and a
cylinder milling cutter on
the drill stand and the
edges were reworked with
a cutter. The aluminum
cuboids were drilled so
deep with a 6mm precision
drill that the top of the
cylinder with the DS18B20
comes to rest in the
middle. A little silicone
thermal paste then ensures

good thermal contact between the sensor, aluminum block and Peltier element. The
mass mhot (= 137.1g, upper cuboid) and mcold (= 172.8g, lower cuboid in the foam
bed) as well as the c-value of aluminum cAlu = 0.896 J / (g K) must be known. Your
mass values will be different from mine for sure. My cuboids are 20mm thick. You
need to cover the element well.

Abbildung 11: Wattmeter-Aufbau_calibrieren

The calibration of the thermocouple as a wattmeter sensor

Let us now start a series of measurements, the results of which provide us with the
coveted proportionality factor k from formula (I) and the Seebeck coefficient α. We
use the program eichen.py for this. All of the above modules must be in the flash of
the ESP8266.

We determine the assignment of the DS18B20 in advance. The sensors are
automatically recognized by the program. We start without calibration and check by
touching a sensor with the hand whether the left value in the list in the terminal
increases. This sensor is placed in the upper cuboid, the other in the lower one. This
will make the assignment easier later. The upper cuboid is considered to be the
warmer one for the later measurement.

thermometer.py

Author: J. Grzesina

Rev: 1.0

Stand: 2021-06-22

from machine import Pin, I2C, ADC, Timer

from time import sleep, ticks_ms,sleep_ms

from onewire import OneWire

from ds18x20 import DS18X20

from oled import OLED

from button import BUTTON8266, BUTTONS

Pintranslator fuer ESP8266-Boards

LUA-Pins D0 D1 D2 D3 D4 D5 D6 D7 D8

ESP8266 Pins 16 5 4 0 2 14 12 13 15

SC SD

adc=ADC(0)

SCL=Pin(5)

SDA=Pin(4)

i2c=I2C(-1,SCL,SDA)

d=OLED(i2c,128,32)

d.clearAll()

ds_pin = Pin(14) # D5@esp8266

ds = DS18X20(OneWire(ds_pin))

chips = ds.scan() # Liste von bytearrays

numberOfChips = len(chips)

print('Found DS devices: ')

for chip in chips:

 print(chip)

t0,t1=0,0

def los_messen(tim):

 global timerFlag

 timerFlag=True

u=0

u0=0

U=""

def getTh(n=5):

 s=0

 for i in range(n):

 s+=adc.read()

 s=s//n

 u=(int(s/1023*3.0*10000))/10 # Spannung in mV

 return u

taste = BUTTON8266(0,invert=True) # D3@esp8266

k=BUTTONS()

d.clearAll()

d.writeAt("THERMOSENSOREN",0,0,False)

d.writeAt("KALIBRIEREN",0,1,False)

d.writeAt(">>> Taste",0,2)

act=k.waitForTouch(taste,3)

if act:

 sleep(1)

 k.waitForTouch(taste,6)

 d.clearAll()

 d.writeAt("Sensor A + B in",0,0,False)

 d.writeAt("Wasser tauchen",0,1,False)

 d.writeAt(">>> Taste",0,2)

 sleep(1)

 k.waitForTouch(taste,6)

 d.clearAll()

 d.writeAt("Temperaturen",0,0,False)

 d.writeAt("konstant?",0,1,False)

 d.writeAt(">>> Taste",0,2)

 sleep(1)

 while taste.tpin.value()==1:

 ds.convert_temp()

 u0=getTh(20)

 sleep(1)

 t0 = (int((ds.read_temp(chips[0]))*100))/100

 t1 = (int((ds.read_temp(chips[1]))*100))/100

 print(t0,t1)

 d.clearAll()

 d.writeAt("A {}".format(t0),0,0,False)

 d.writeAt("B {}".format(t1),0,1,False)

 d.writeAt("U {}".format(u0),0,2)

 sleep(2)

 dt=t0-t1

 d.clearAll()

 d.writeAt("Calibrat. done",0,0,False)

 d.writeAt("Release key!".format(dt),0,1,False)

 d.writeAt("U0={} dT={}".format(u0,dt),0,2)

 sleep(3)

 f=open("calibration.txt","w")

 f.write(str(dt)+"\n")

 f.write(str(u0)+"\n")

 f.close()

 f=None

else:

 f=open("calibration.txt","r")

 print("Position",f.tell())

 dt=float(f.readline())

 u0=float(f.readline())

 f.close()

 f=None

print("dt = {}".format(dt))

print("u0 = {}".format(u0))

sleep(1)

T=Timer(0)

timerFlag= True

intervall=10000

T.init(mode=Timer.PERIODIC,period=intervall, \

 callback=los_messen)

firstRun=True

start=ticks_ms()

while taste.tpin.value() == 1:

 if timerFlag==True:

 timerFlag=False

 ds.convert_temp()

 zeit=ticks_ms()-start

 s=getTh(20)

 u=s-u0 # Spannung in mV

 uString=(str(u)).replace(".",",")

 sleep_ms(750)

 t0 = (int((ds.read_temp(chips[0]))*100))/100

 t1 = dt+(int((ds.read_temp(chips[1]))*100))/100

 dT=t0-t1

 f="{:.2f}"

 dT = f.format(dT)

 t0 = f.format(t0)

 t1 = f.format(t1)

 dTString = dT.replace(".",",")

 t0String = t0.replace(".",",")

 t1String = t1.replace(".",",")

 f="{:>8};{:>6};{:>6};{:>6};{:>6}"

print(f.format(str(zeit),t0String,t1String,dTString,uString))

 d.clearAll()

 d.writeAt("A {}".format(t0),0,0,False)

 d.writeAt("B {}".format(t1),0,1,False)

 d.writeAt("U {}".format(u),0,2)

T.deinit()

d.clearAll()

d.writeAt("PROG DONE",0,0)

The program does not contain any exotic code parts. The time control takes place via
a timer interrupt whose interrupt service routine (ISR) sets a flag. This flag tells the
main program that a measurement is to be carried out. The IRQ runs in continuous
mode until the program is aborted with the button on GPIO0 (cancel button).

At the start, the two aluminum cuboids should have the same temperature. So that
both positive and negative voltages can be measured on the thermocouple, the
negative connection is not connected to GND but to the middle of the voltage divider
made up of two 10kΩ resistors. The center voltage must be determined so that the
ESP8266 can subtract it from the measured value later during the measurements.
We are only interested in the voltage at the Peltier element.

Nevertheless, despite sufficient waiting, the two DS18B20 sensors result in slightly
different temperature values and fluctuations in the ADC values due to noise on the
line. To mitigate this effect, the ADC scans the input 20 times and calculates an
average value from it. This happens in the getTh () function.

A calibration can therefore be carried out before the measurements, which the
display provides information about. The calibration data are written to a file that is
read in during further measurement processes. The thermocouple does not have to
be connected for calibration. But during the process, the button that is parallel to it
must be pressed, or we short-circuit the path with a jumper cable. When the values in
the display no longer change significantly, we press the button on GPIO0.

What happens next?

The thermocouple must now be disconnected from the ESP8266 in any case,
otherwise the controller will die! The labeling of the Peltier element should point
downwards. Then we set a value between 5V and 6V on the power supply unit and
switch off the power supply to the converter. We connect the positive pole of the
converter to the red connection of the thermocouple, the negative pole to the black
one.

The eichen.py program is started. We wait until the temperatures of the aluminum
blocks and the voltage are shown in the display and in the terminal. The temperature
value of the lower block is noted.

The power supply to the converter is now switched on. If the temperatures have risen
and fallen by a good 5 degrees Celsius, we switch off the power supply and
disconnect the connection between the converter and the thermocouple. We stop the
program with the cancel button and restart it. The thermocouple is connected to the
ESP8266. Every 10 seconds, line by line is output until the temperature of the cold
cube has just reached the starting temperature again. The measurement is stopped.

Here is my table of measured values, which has been expanded to include the deltaT
column, which shows the difference between the warm and cold cuboid. We use the
values marked in color for the calculation.

Zeit in oben unten

Millisekunden Thot Tcold deltaT U

130003 29,43 18,06 11,37 475,1

140003 29,25 18,31 10,94 445,7

150003 28,93 18,49 10,44 419,3

160003 28,62 18,74 9,88 384,1

170003 28,31 18,93 9,38 357,8

180003 28 19,18 8,82 334,3

190003 27,68 19,43 8,25 316,7

200003 27,43 19,62 7,81 293,2

210003 27,18 19,81 7,37 275,6

220003 26,93 19,99 6,94 261

230003 26,68 20,18 6,5 243,4

240003 26,43 20,31 6,12 225,8

250003 26,25 20,49 5,76 214,1

260003 26,06 20,62 5,44 199,4

270003 25,87 20,74 5,13 187,7

280003 25,68 20,93 4,75 175,9

290003 25,56 21,06 4,5 167,1

300003 25,37 21,18 4,19 155,4

310003 25,25 21,24 4,01 143,7

320003 25,06 21,37 3,69 134,9

330003 24,93 21,43 3,5 129

340003 24,87 21,56 3,31 120,2

350003 24,68 21,62 3,06 111,4

360003 24,62 21,68 2,94 105,6

Die Grafik zeigt einen linearen Zusammenhang auf, der eigentlich rückläufig zu
betrachten ist.

Now has to be calculated.

The heat capacity (aka heat capacity) of the cuboids
Chot = cAlu • mhot = 0,896 J/(gK) • 137,1g = 122,84 J/K

Ccold = cAlu • mcold = 0,896 J/(gK) • 172,8g = 154,83 J/K

Hier sind die in der Grafik markierten Zeilen zusammengefasst.

oben unten

 t in s T(hot) in
°C

T(cold) in
°C

U in mV

 130003 29,43 18,06 475,1

 360003 24,62 21,68 105,6

Differenz 230 4,81 3,62 369,5

The mean thermoelectric voltage
Umid = (475,1 + 105,6)/2 mV= 290,35 mV = 0,290 V

The internal energy given off by the upper cuboid
Wth_ab = Chot • (29,43 – 24,62) K = 122,84 J/K • 4,81 K = 590,87 J

The thermal output of the cuboid
Pth = Wth_ab / Δt = 590,87 J / 230s = 2,57W

and finally our k-value
k = Pth / Umid = 2,57 W / 0,290 V = 8,8 W/V

ΔTmid = (11,37+2,94)/2 K = 7,16 K

β = ΔU / ΔTmid = 369,5mV / 7,16K = 51,64 mV/K

With 127 elements you have 254 contact points.

α = 51,64 mV / 254 = 203µV/K

This is within the manufacturer's specifications in the data sheet. Perfect!

But the most important thing for us is the k-value, because with it we can convert our
structure into a wattmeter. For every volt of thermal voltage, 8.8 J are transported
from the warm to the cold side per second. Our ESP8266 can resolve 3.0V / 1024
LSB = 2.93 mV / LSB. This corresponds to 8.800 W / V • 0.00293V / LSB = 25 mW /
LSB. That means we measure in 25mW steps. As noted elsewhere, the resolution
can be increased if you also use an operational preamplifier and / or an ESP32
instead of the ESP8266.

The wattmeter in use

There is now only one small step left to implement the thermal joule and watt meter.
The thermocouple that has just been tested is removed and cleaned. The silicone
paste must be removed thoroughly so that the element can be glued into a plexiglass
holder as in the following photo. During the measurement process, fingers must not
be touched, as otherwise uncontrolled heat flows would flow, which would falsify the
result.

Abbildung 13: Wattmeter - Thermoelement als Fühler

If you hold one side against a smooth surface, the next program tells us how many
joules flow from the warmer side to the colder side per second. The smaller line
below provides information about the ambient temperature. Using the sensor area of
4 x 4 = 16 cm², you can then extrapolate to the entire tested area, for example
windows, walls, oven, house doors ... The test on windows with and without roller
shutters shows serious differences in the energy flow in summer and winter.

If the sensor, blackened on one side, is glued to a large heat sink with thermally
conductive adhesive, which is built into a styrofoam block and provided with a
collimator tube, then very sensitive heat radiation can be measured.

Abbildung 14: Strahlungssensor

Abbildung 15: Strahlungssensor_Detail

But now to the program. For the watt and joule display we use a large character set
with 24 points, in the way it was created in the last episode. If you want to create one
yourself, you can use the font2py.rar package. This time, however, I packed the
functions for the control into the CharSet class in the charset.py module. The
character set is geometer_24.py.

A timer interrupt ensures a measured value update every 2 seconds. During this
time, the watt and joule displays alternate. A normal line of text below shows the
ambient temperature, which is scanned by a (bare) DS18B20. The circuit is, apart
from the lack of one DS18B20, identical to the circuit for calibrating the Peltier
element. As there, a calibration is offered in the wattmeter.py program, for which the
sensor is best placed or hung for a while in still air, without the sensor surfaces
coming into contact with other objects.

wattmeter.py

Author: J. Grzesina

Rev: 1.0

Stand: 2021-06-22

from machine import Pin, I2C, ADC, Timer

from time import sleep, ticks_ms,sleep_ms

from onewire import OneWire

from ds18x20 import DS18X20

from oled import OLED

from button import BUTTON8266, BUTTONS

import geometer_24 as zs

from charset import CharSet

import os,sys

Pintranslator fuer ESP8266-Boards

LUA-Pins D0 D1 D2 D3 D4 D5 D6 D7 D8

ESP8266 Pins 16 5 4 0 2 14 12 13 15

SC SD

adc=ADC(0)

SCL=Pin(5)

SDA=Pin(4)

i2c=I2C(-1,SCL,SDA)

d=OLED(i2c,128,32)

d.clearAll()

d.setYoffset(4)

ds_pin = Pin(14) # D5@esp8266

ds = DS18X20(OneWire(ds_pin))

chips = ds.scan() # Liste von bytearrays

numberOfChips = len(chips)

print('Found DS devices: ')

for chip in chips:

 print(chip)

t0,t1=0,0

def los_messen(tim):

 global timerFlag

 timerFlag=True

u=0

u0=0

U=""

def getUth(n=5):

 s=0

 for i in range(n):

 s+=adc.read()

 s=s//n

 u=(int(s/1023*3.0*10000))/10 # Spannung in mV

 return u

def testCalibration():

 calibrated=("ucal.txt" in os.listdir())

 print (calibrated)

 d.clearAll()

 d.writeAt("THERMOSPANNUNG",0,0,False)

 d.writeAt("KALIBRIEREN",0,1,False)

 d.writeAt(">>> KEYS A + B",0,2)

 act=k.waitForTouch(taste,3)

 print(act)

 if calibrated and act==None:

 f=open("ucal.txt","r")

 u0=float(f.readline())

 t0=0

 f.close()

 f=None

 d.clearAll()

 d.writeAt("CALIBR. READ",0,0,False)

 d.writeAt("U0={} T={}".format(u0,t0),0,2)

 sleep(3)

 elif act==1:

 u0,t0=calibrateUth()

 else:

 u0=1543

 t0=9999

 d.clearAll()

 d.writeAt("CALIBR. SET",0,0,False)

 d.writeAt("U0={} T={}".format(u0,t0),0,2)

 sleep(3)

 return (u0,t0)

def calibrateUth():

 d.clearAll()

 d.writeAt("PRESS KEY B",0,0,False)

 d.writeAt("WAIT FOR",0,1,False)

 d.writeAt("RELEASE MSG.",0,2)

 sleep(3)

 d.clearAll()

 d.writeAt("CALIBRATING",0,0)

 ds.convert_temp()

 u0=getUth(20)

 sleep(3)

 t0 = (int((ds.read_temp(chips[0]))*100))/100

 print(t0,u0)

 d.clearAll()

 d.writeAt("CALIBR. DONE",0,0,False)

 d.writeAt("RELEASE KEYS!",0,1)

 sleep(3)

 d.clearAll()

 d.writeAt("U0={} mV".format(u0),0,0,False)

 d.writeAt("T={} *C".format(t0),0,2)

 sleep(3)

 f=open("ucal.txt","w")

 f.write(str(u0)+"\n")

 f.close()

 f=None

 return (u0,t0)

taste = BUTTON8266(0,invert=True) # D3@esp8266

k=BUTTONS()

cs=CharSet(zs, d)

d.clearAll()

d.writeAt("THERMISCHES",0,0,False)

d.writeAt("WATT-METER",0,1,False)

d.writeAt("JOULE-METER",0,2)

sleep(3)

U0,T=testCalibration()

print("T = {}°C".format(T))

print("U0 = {}V".format(U0))

sleep(2)

T=Timer(0)

timerFlag= True

intervall=2000

T.init(mode=Timer.PERIODIC,period=intervall, \

 callback=los_messen)

energy=0

while taste.tpin.value() == 1:

 if timerFlag==True:

 timerFlag=False

 ds.convert_temp()

 s=getUth(20)

 u=s-U0 # Spannung in mV

 power=int((u*8.8/1000+0.05)*100)/100

 powerString=("{:.2f}".format(power)).replace(".",",")

 energy=energy+int((power*intervall/1000+0.05)*\

 100)/100

 energyString=("{:.2f}".format\

 (energy)).replace(".",",")

 sleep_ms(1000)

 t0 = (int(((ds.read_temp(chips[0]))+0.05)*10))/10

 f="{:.1f}"

 t0 = f.format(t0)

 t0String = t0.replace(".",",")

 d.clearAll(False)

 cs.putValue(powerString,"W",0,0,False)

 d.writeAt(" T= {} *C".format(t0String),0,2)

 sleep(1)

 d.clearAll(False)

 cs.putValue(energyString,"J",0,0,False)

 d.writeAt(" T= {} *C".format(t0String),0,2)

T.deinit()

d.clearAll()

d.writeAt("PROG DONE",0,0)

With the help of this measuring device, we are well prepared when we build our
refrigeration machine with the thermoelectric converters in the next episode. If the
energy on the warm side of the machine is sufficiently dissipated, you can
(theoretically) achieve a temperature reduction on the cold side of approx. 60K
according to the data sheet. We will then test how things are really going. So long,
have fun doing handicrafts and measuring.

