

Abbildung 1: Testaufbau mit einer angeschlossenen Einheitf

This episode is available in German and English PDF version.

In the last episode, a cool box was built with the help of a Peltier element. We
extended the buck converter of the power supply from the first episode so that the
output voltage could be controlled by an ESP32. We also found a formula with which
the calculation of the output voltage could be calculated depending on the duty cycle
of the PWM signal. Today we are expanding the whole thing to up to three such units
and developing a control program. You will learn how similar properties of different
objects can be managed by a method using lists and how to change methods of a
class without interfering with the class definition - keyword: decorator. I will tell you in
a moment what you can expect in detail, but first of all welcome to the fourth part of
the series with the title

Peltier elements - The ESP32 controls the do-it-
yourself refrigerator

An ESP32 takes over the monitoring of the temperatures, the control of the current
strength in the thermoelectric converters and the display of the most important data
on each one OLED display on the respective unit. Of course, currents up to approx. 4
A have to be measured. A special kind of challenge is to control up to three OLED
displays, all of which have the same I2C device address. The motors of the waste

http://www.grzesina.de/az/peltier/cooler/Thermobox_teil4_ger.pdf
http://www.grzesina.de/az/peltier/cooler/Thermobox_teil4_eng.pdf
http://www.grzesina.de/az/peltier/cooler/Thermobox_eng.pdf

heat fans should start automatically when the voltage is switched on at the Peltier
elements and the fans in the box should be able to be switched individually by the
ESP32. Here, too, the characteristics of the motor with 12 V and 80 mA go well
beyond the capacity of a GPIO connection. So that the regulated voltage of the buck
converter, switched with as little loss as possible, can reach the Peltier elements, I
had provided a relay for each branch. "Had" because I was forced to give up the idea
of relays in the course of development, which is why I'll tell you below in the hardware
chapter.

In terms of programming, it is also important to operate the extensive hardware as
effectively as possible, with RAM memory we are probably close to the limit. The data
of the cooler units are defined using lists and controlled and managed using indices.
We benefit from the fact that all possible objects can be accommodated in a list
under MicroPython. The Arduino IDE only allows simple variable types in an array.
Some of the functions are written for positive (HIGH level triggered) and negative
logic (LOW level triggered) and are therefore very adaptable. This makes it easier to
transfer them to other applications. For tests, the PC keyboard is first used to send
commands to the controller. In the next episode, we will either develop and use an
app on the Android smartphone or a program in connection with the AZ-Touch wall
box with TFT display (320x240 pixels).

Hardware

For better orientation, I am already presenting the circuit diagram at this point. You
can then easily see the various assemblies. It is possible to realize the project with
one, two or all three units. Accordingly, the number of parts required is selected from
the list below, which is designed for three units.

Yes, that
would have
been the
wiring
diagram if it
hadn't been
for the relay
thing.

Abbildung 2: Thermobox_Schaltung 1

A relay is an electromagnetically operated switch, and the magnetic field when the
relay coil is switched on does not stop at the plastic housing of the relay, nor does the
residual magnetism after it is switched off.

"What's the problem with that?" You mean? Well, we want to measure the currents in
the branches and that is to be done with the ACS712 sensors. But they work with
Hall sensors, not with voltage measurement on a measuring resistor. It is precisely
these Hall sensors that do not only detect the magnetic field of the current to be
measured, but also that of the relays and do so very dominantly even at a distance of
several tens of centimeters.

Instead of the relays, three MOSFET driver stages have now been put into service.
Not quite as effective as a relay in terms of switching properties, the MOSFETs have
the advantage that there is no contact weart. A copy of the circuit diagram in DIN A4
is available for download

Abbildung 3: Thermobox_Schaltung mit MOSFET-Stufen

Here comes the list of parts. You can set up the project with just one cooler unit, then
you do not need an I2C multiplexer, but you have to make major changes to the
program in some places. The I2C multiplexer is required for two or more units in
order to control the OLED displays separately. As already mentioned above, the
modules have a permanently assigned device address and can therefore not be
operated in parallel on an I2C bus. This project shows how such problems can be
solved in a sophisticated way with regard to hardware, but also in terms of
programming, without having to intervene in existing modules (program libraries). I
have never encountered such tricks with the Arduino IDE - MicroPython can come up
with them.

http://www.grzesina.de/az/peltier/cooler/Thermobox_Schaltung_gesamt.pdf
http://www.grzesina.de/az/peltier/cooler/Thermobox_Schaltung_gesamt.pdf

Teileliste:

3 Thermoelektrischer Wandler 40 x 40 mm

1 DC-DC-Buck-Converter 8A für 2 Einheiten oder
DC-DC-Buck-Converter 12A für 3 Einheiten

1 ESP32

1 DS18B20 als Modul oder Einzel-IC

3 DS18B20 mit 1m Kabel, wasserdicht

1 PCA9548A I2C IIC Multiplexer

1 Taster KY-004

3 0,91 Zoll OLED I2C Display 128 x 32 Pixel

3 ACS712 Stromsensor 5A Messbereich

3 IRF520 MOS Driver Modul 0-24V 5A

1 0,28 Zoll Mini Digital Voltmeter Spannungsmesser mit 7-Segment Anzeige

1 nur bei 12V-Akkubetrieb: LM2596S DC-DC Netzteil Adapter Step down Modul

1 LED weiß 5mm

1 LDR 5mm

1 20-25mm Messingrohr 6mmØ und 0,5mm Wandstärke

 Dichtmasse

 Schrumpfschlauch Stücke

1 Widerstand 1kΩ

1 Widerstand 10kΩ

1 NPN Standard Transistor zum Beispiel BC550

2 Zweipolige Stiftleiste gerade

6 Transistor BC337 (30V, 800mA)

3 Transistor BC548 (30V, 100mA)

3 Widerstand 4,7kΩ

9 Widerstand 1,0kΩ

6 Diode 1N4148

6 Stiftleiste 4-polig gerade

3 Stück Lochraster-Platine 4 x 11 Pins

3 Stück Lochraster-Platine 4 x 14 Pins

1 LED rot

1 Widerstand 560Ω

1 zweipolige Buchsenleiste

1 Widerstand 33kΩ

1 Widerstand 11kΩ (Ersatz 10kΩ + 1kΩ)

2 Breadboard

 diverse Jumperkabel

Für den Thermokopf

2*3 Rippen-Kühlkörper

2*3 dazu passende PC-Lüfter

4*3 Kunststoffwinkel 10 x 10 x 30mm

 Wärmeleitpaste

evtl. einige Aluplatten Abschnitte (siehe Text)

 wasserfest verleimte Mehrschichtplatte

3 Stück Styroporplatte 126 x 126 x 10

 diverse Schrauben, Muttern,

 Zuleitungskabel für das Peltier-Element mit mindestens 1mm²

https://www.az-delivery.de/products/tec1-12706-thermoelektischer-wandler?_pos=2&_sid=6da4633a0&_ss=r
https://www.az-delivery.de/products/xh-m401-dc-dc-step-down-xl4016e1-poti?_pos=1&_sid=3118ce1a5&_ss=r
https://www.az-delivery.de/products/xl4016e-yh11060d?_pos=2&_sid=3118ce1a5&_ss=r
https://www.az-delivery.de/products/esp32-lolin-lolin32?_pos=2&_sid=46c0af065&_ss=r
https://www.az-delivery.de/products/ds18b20-temperatursensor-modul
https://www.az-delivery.de/products/5ersetds18b20
https://www.az-delivery.de/products/2xds18b20wasserdicht?variant=27601701193
https://www.az-delivery.de/products/tca9548a-i2c-iic-multiplexer
https://www.az-delivery.de/products/button-modul
https://www.az-delivery.de/products/0-91-zoll-i2c-oled-display?variant=6127765028891
https://www.az-delivery.de/products/acs712-5a
https://www.az-delivery.de/products/irf520-mos-driver-modul-0-24v-5a
https://www.az-delivery.de/products/0-28-zoll-mini-digital-voltmeter-mit-7-segment-anzeige-2-5v-30v
file:///F:/P_programmieren/az-blog/___peltier/thermobox/LM2596S%20DC-DC%20Netzteil%20Adapter%20Step%20down%20Modul%5e
https://www.az-delivery.de/products/pcb-board-set-lochrasterplatte-platine-leiterplatte-4x4-stuck
https://www.az-delivery.de/products/pcb-board-set-lochrasterplatte-platine-leiterplatte-4x4-stuck

Für den Kühlbehälter

3 Styroporplatte 20 oder 30mm

 Paketklebeband

The structure of the thermal head and the cooling container has already been
described in detail in Part 3, as well as the manufacture of the optocoupler as a
supplement for the 8A buck converter, which makes the controller remotely
controllable. The 12A converter can be cuffed in a similar way. This module is shown
from above in the circuit diagram. The connection of the LDR in the optocoupler is
marked yellow on the underside of the circuit board.

Abbildung 4: 12-Ampere-Regler_Unterseite

Gehen wir den Schaltplan kurz durch, und schauen wir uns die Funktionseinheiten
an.

 The voltmeter, at the top left, shows the voltage on the
battery or PC power supply. A switch that is not shown in
the circuit diagram should be provided for both energy
suppliers. In the case of the battery, the switch must
withstand a maximum of 12A. A small switch is sufficient
for the power supply unit, which connects connection 16
(PS-ON) to a ground connection on the plug. 1.3mm post
pins can be used as plug pins (see Figures 5 and 6).

Abbildung 5:Netzteilstecker 24-polig von
hinten

Abbildung 6:Netzteilstecker halb von vorne

The PC power supply unit must of course be able to deliver up to 12A at the 12V
connection, that is, the connection must have an output power of 144W or more so
that three cooling units can be connected. The PC power supply also has the great
advantage that it also has a 5V output. In the case of battery operation, a separate
controller must be used for this. If we use the 5V SB line (pin 9) of the power supply
unit for the 5V supply, the ESP32 can enable the 12V supply itself via one of the still
free GPIO connections by setting connection 16 to GND potential pulls. The power
supply then remains firmly connected to the 230V network. In the final version, the
command to switch on can alternatively also be given via the radio link.

The regulated voltage from the buck converter is fed to the Peltier elements at the
red connection. From the black connection it goes back to the drain connection of the
MOSFET transistor and from its source via the current measuring module ACS712
05A to GND. An inverting transistor switching stage on the warm side ensures that
whenever current flows through the Peltier element, the fan on the warm side also
starts up automatically. This is what the circuit for the breadboard and the associated
circuit diagram look like.

Abbildung 7: Transistortreiber invertierend

Abbildung 8: Transistortreiber invertierend_Schaltung

The other three simple switching stages activate the fan motors on the cold side
using the signal from the ESP32. Here, too, the diode serves to protect the transistor.
The ring on the diode must be on the positive voltage supply side. Reverse polarity
kills the diode and the transistor.

Abbildung 9: Transistortreiber

Abbildung 10: Transistortreiber_Schaltung

Abbildung 11: Transistor-Schaltstufen

Abbildung 12: Temperaturanzeige

The OLED displays are attached to the cooler and provide information about
temperature, voltage or amperage. The problem that all displays have a device
address that cannot be changed is solved by using a PCA9548A. This I2C
multiplexer puts the signal from the ESP32 through to the outputs that have a 1 bit in
the configuration register of the module. Before outputting to an OLED module, the
channel must first be switched, then control takes place as if the OLED were the only
one in the cosmos. So that this can be done transparently and without changing the
methods of the OLED and CharSet classes, the corresponding methods are
"disguised"; in MicroPython this process is called decorating. There are hints on this
at the very end before the program listing.

An enlarged font is used for display. You can clone your own fonts from the Windows
font folder with the font2py.rar package. The batch file makecharset.bat contained in
the package takes care of this in one step with the specification of the 4 parameters
font, size, chars and source path. The string chars specifies the characters from the
font character set that you want to clone. How this works in detail can be found in the
PDF document Erstellen_von_großen_oder_eigenen Zeichensaetzen.pdf. A quick
guide with sources can be found here. Alternatively, you can download the font
geometer_18.py for now

http://www.grzesina.de/az/zeichensatz/Erstellen_von_großen_oder_eigenen_Zeichensaetzen.pdf
http://www.grzesina.de/az/zeichensatz/ZeichensatzHints.txt
http://www.grzesina.de/az/zeichensatz/geometer_18.py

The three temperature sensors with the cables are each led through the lid into the
cool box and are all connected to the same one-wire bus together with the sensor for
the ambient temperature.

A LOW-active button is used for an orderly withdrawal. It can be pressed at any time
to cancel the program. Orderly means that before the "off" is tidied up. The power
supply to the Peltier elements is interrupted, the displays are switched off.

With that we have arrived at the ESP32 itself. The display LED on GPIO2, the PWM
output on GPIO15, the measurement of the output voltage on the buck converter via
analog input GPIO35 and the inputs for current measurement VN, VP and GPIO34
have not yet been mentioned. To reduce the noise, each input is blocked with a
capacitor of 0µ1 against GND, and the mean value of 100 individual measurements
is used as standard for the measurement of the analog signals. Nevertheless, despite
the correction formulas for the ADC characteristic, there is a measurement
inaccuracy of up to 10%.

Software

For flashing and programming the ESP32:
Thonny oder
µPyCraft
packetsender for testing the ESP32 as a TCP/UDP server
font2py.rar

Used Firmware:

MicropythonFirmware
Please choose a stable version

MicroPython-Programs:

MicroPython-Programs:

thermobox.py
button.py
charset.py
geometer_18.py
i2cbus.py
oled.py
ssd1306.py
font2py.rar Font-Konverterpaket

https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://github.com/dannagle/PacketSender/releases/download/v7.0.5/PacketSender_x64_v7.0.6.exe
http://www.grzesina.de/az/peltier/joulemeter/font2py.rar
https://micropython.org/download/all/
https://micropython.org/download/all/
http://www.grzesina.de/az/peltier/cooler/thermobox.py
http://www.grzesina.de/az/peltier/cooler/button.py
http://www.grzesina.de/az/peltier/cooler/charset.py
http://www.grzesina.de/az/peltier/cooler/geometer_18.py
http://www.grzesina.de/az/peltier/cooler/i2cbus.py
http://www.grzesina.de/az/peltier/cooler/oled.py
http://www.grzesina.de/az/peltier/cooler/ssd1306.py
http://www.grzesina.de/az/zeichensatz/font2py.rar

MicroPython - Language - Modules and Programs

You can find detailed instructions for installing Thonny here. There is also a description
of how the Micropython firmware is burned onto the ESP chip.

MicroPython is an interpreter language. The main difference to the Arduino IDE,
where you always and exclusively flash entire programs, is that you only have to
flash the MicroPython firmware once at the beginning on the ESP32 before the
controller understands MicroPython instructions. You can use Thonny, µPyCraft or
esptool.py for this. I have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. This is exactly what bothers me
about the Arduino IDE. You simply save an enormous amount of time if you can do
simple tests of the syntax and hardware through to trying out and refining functions
and entire program parts via the command line before you knit a program out of it.
For this purpose I also like to create small test programs over and over again. As a
kind of macro, they combine recurring commands. From such program fragments,
entire applications can develop.

Autostart

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

Testing programs

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

In between, Arduino IDE again?

If you want to use the controller together with the Arduino IDE again later, simply
flash the program in the usual way. However, the ESP32 / ESP8266 then forgot that
it ever spoke MicroPython. Conversely, every Espressif chip that contains a compiled
program from the Arduino IDE or the AT firmware or LUA or ... can easily be provided
with the MicroPython firmware. The process is always as described here.

http://grzesina.de/az/die_entwicklungsumgebung_thonny.html
https://micropython.org/download/all/
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen

The operating program

The program for the ESP32 already contains all the sequences that are used both for
initial tests and are also intended for radio operation. Various functions read out
sensors and set the voltage, the current strength or the temperature or switch the
Peltier elements or the fans in the cold room.

All parts that are duplicated in the case of several units are managed by lists. This
includes current measurement, switching levels, OLED displays, thermal sensors and
the cold air vortex. The assignment of the GPIO pins is done in for loops.
Corresponding functions receive, in addition to other possible parameters, the index
of the unit to be operated. As an example, let's take a look at the definition of the
MOSFET control pins. The designation "relais" or "rel" is reminiscent of the original
approach with the 4-way relay unit. The MOSFET stages are, in contrast to the relay
stages, HIGH-triggered.

relaisPin=(12,13,14) # Relais0,1,2

rel0,rel1,rel2=0,1,2

on=1; off=0

lowTriggered=0

highTriggered=1

rel=[0,0,0] # Liste der Relais-Pins

for i in range(3): # Pin definieren + Relais aus

 rel[i]=Pin(relaisPin[i],Pin.OUT)

 rel[i].value(1)

We enter the pin numbers in a tuple. In contrast to lists, tuples have the advantage
that processing is faster. The disadvantage compared to lists is that the latter provide
more versatile methods for processing and that list contents are mutable, which is not
the case for tuples and strings (immutable). Elements of lists can change the value
afterwards, elements of tuples or characters in strings cannot. But now back to the
definition of the relay pins.

The indices are assigned to the variables rel0 etc. The definition of some variables
promotes readability later in the program. Then we create a list, which is then filled in
the for loop with the pin objects for switching the MOSFETs. Because the MOSFETs
are triggered at HIGH level, a 1 on the GPIO pin switches each transistor on and a 0
off.

The relay () function belongs to the MOSFETs. This takes the index n and the
desired status state as parameters as well as the flag trigLevel, which is optionally
preassigned the value highTriggered (= 1).

def relais(n,state,trigLevel=highTriggered):

 status=rel[n].value() # Status merken

 s = state # Zielstatus übernehmen

 if trigLevel==lowTriggered: # Pegel tauschen, wenn lowtr.

 status=(0 if status==1 else 1)

 s=(0 if state==1 else 1)

 rel[n].value(s)

 return status # vorheriger Status zurueck

The existing status is queried and the target status is assigned to the local variable s.
The if construct converts the logical level into the electrical level if the LOW level is
triggered, i.e. switched on by a 0 at the ESP32 output. In this case, the previously
read level is also inverted so that the return value is logically correct again. Each of
the following calls therefore switches on the corresponding switching stage:

3 HIGH level triggered transistor stages:
 for n in range (3):
 relay (n, on)

LOW level triggered relay stage:
>>> relay (0, on, low triggered)

In the first case, the default value highTriggered applies. In the second case, the
trigger behavior must be specified so that the relay switches correctly.

The getRelaisState () function queries the switching status of a switching stage. The
output is again adapted to the trigger property.

def getRelState(n,trigLevel=highTriggered):

 status=rel[n].value() # Status holen

 if trigLevel==lowTriggered: # Pegel tauschen, wenn lowtr.

 status=(0 if status==1 else 1)

 return status

The basic function readADC () serves functions for current and voltage measurement
with the raw counter values. It takes the index and an optional number of repeated
measurements to filter and calm the result, which is the mean value of the individual
measurements, 100 individual measurements are standard.

At 0.0A at the output, the current sensors deliver a voltage equal to half the operating
voltage. The getQuiescentCurrentRaw () function determines the count values after
which the corresponding line was safely interrupted by the MOSFET. After a pause of
0.2 seconds readADC () is called and then the transistor is set to the previous
switching state. The function stores the zero-ampere count values in list I0 []. The
originally used ACS712 20A delivered too small and very unsafe values at the
operating voltage of 3.3V, because the sensors normally work on 5V. By exchanging
with 5A types, the accuracy could be increased, even if the calibration factors,
voltage to current strength, from the data sheet for the voltage 3.3V do not apply. A
calibration factor had to be found by using a DAM (digital ampere meter).
Unfortunately, the analog inputs of the ESP32 cannot tolerate voltages greater than
3V, which is why a 5V voltage supply for the ACS712 was not used as a precaution.

readAmps () uses the raw values. After the validity of the index has been checked,
the readADC () call brings the raw count value. The I0 value of the channel is
subtracted from this and the difference is converted into a current value. The value
mVpA (millivolts per ampere) is used for this. The values for this factor also depend
on the specimen and for this reason we have to convert the simple variable mVpA
into a list of the module-specific values. This has already happened in the listing.
Again, lists allow a size to be processed by only a single method.

mVpA= [73,73,75]

….

def readAmps(n,repeat=100): # Stromwert n holen

 if n in range(3):

 Icnt=readADC(n,repeat)

 Icnt-=I0[n]

 return int(Icnt/4096*3600/mVpA[n]*100+0.5)/100

 #counts/maxcount*Uref/ApmV

 else:

 return 9999

If the specified index was not permitted, the validity of the current value can be
checked using the return value.

The program should only control connected units. We check the presence by briefly
switching on the corresponding stage and checking whether a current is flowing
which corresponds at least to the minimum voltage applied to a Peltier element. This
is done by the findCoolers () function, to which the trigger property of the switching
stage must be passed. We call the setVoltage () function with the desired voltage
value of 4V and get the duty cycle of the previous voltage value back, which we
remember. Switching on each stage provides its previous switching status, which we
also note. If the detected current value is greater than 0.3A, the unit is recorded as
True in the coolerPressent list. Then the switching state of the transistor and finally
the previous voltage are restored.

In the previous blog episode, we used a formula to show the relationship between the
clock ratio D of the PWM signal and the resulting voltage Ua at the output of the buck
converter.

Abbildung 13: Gleichung der Trendlinie:

The parameters a = 17.8894 and b = 0.39279 depend on the components of the SB
optocoupler and their arrangement. That is why they have to be determined by a
series of measurements. How to do this is described in episode 3.

However, we now need exactly the opposite assignment Ua -> D. We obtain the
relationship by transforming the equation and solving it for D

Abbildung 14: Duty Cycle aus Spannung

or in general:

http://www.grzesina.de/az/peltier/cooler/Thermobox_ger.pdf

Abbildung 15: Duty Cycle aus Spannung_allgemein

This formula is used by the volt2duty () function. Permissible voltage values are
converted and at the same time the percentage is further adapted to the range 0 to
1023. The service of this function is in turn used by the functions setCurrent () and
setVoltage (). setCurrent () first tries to set the voltage as it would be necessary for
the desired current strength according to the ohmic resistance formula. If this does
not succeed because the calculated voltage is not in the range Umin to 16V, the
minimum or maximum possible voltage is set and the function is exited. The function
is exited even if the actual current intensity does not deviate from the nominal current
intensity by more than 100mA. If a setting was possible, but the difference between
the actual and target value was too great, the function also attempts a successive
approximation in ten steps of 0.5V each. The results of the voltage measurement
deviate considerably in the lower and upper range from the values measured with the
DVM (digital volt meter). In order to eliminate this evil, we have to start a series of
measurements in which the target voltage from the DVM and the voltage measured
by the ESP32 are recorded. Libre Office then provides a power function with the
graphical evaluation, of whose function term we are interested in the coefficients,
which we transfer to our program in abbreviated form. Our demands on accuracy
decide whether we choose a function of the second or third order. The worksheet is
available for download

Abbildung 16: Grafik zur Fehlerkorrektur bei der Spannungsmessung

In the program text it looks like this. With the factor 3793 instead of 3600, I first tried
to trim the result, but it was not enough. UFaktor takes into account the voltage
divider 33kΩ: 11kΩ at the analog input GPIO35, which reduces the 12V to ESP32-
compatible 3.0V.

http://www.grzesina.de/az/peltier/cooler/Korrektur%20der%20Spannungsmessung.ods
http://www.grzesina.de/az/peltier/cooler/Korrektur%20der%20Spannungsmessung.ods

spannung=0

A=-0.00103545

B=0.0164595

C=-0.1812184

D=0.6512957

….
def readUist(repeat=100):

 global spannung

 Ucnt=readADC(Ubat,repeat) # counts/maxcount*Uref * 4V/Vmes

 U=int((Ucnt/4096*3793 * UFaktor)/10+0.5)/100

 spannung=A*U**3+B*U**2+(C+1)*U+D

 return spannung

The setTemp () and holdTemp () functions are used to set and monitor the
temperature in the cooler box. The latter tries to set and maintain the target
temperature by calling it cyclically in the main loop. Of course, this only works in
server mode. In the test phase, the loop is blocked by the input command.

The cold air distributors are switched using the setFanState () function. Because
these are simple transistor stages with positive logic, the trigger property was not
added from the outset.

getTemp () is the function that determines the temperature in the cooler unit n and
returns it with one decimal place. An invalid temperature is returned as 9999 in the
event of an error. If a non-existent cooler unit is addressed, -9999 is returned.

The displayValues () function is responsible for displaying values in the OLED
displays. It checks whether the current intensity control is switched on (Iflag is not
equal to 0) and outputs the current intensity or the value of the set voltage depending
on the temperature.

As the most extensive function, parse () takes on the task of decoding incoming
commands and initiating the corresponding actions. Feedback on the action or error
messages are also generated. The latter helps both the user and the programmer
because the point of failure can be easily identified.

All commands have a similar structure. A letter stands for the type of job, followed by
a colon. Except for setting the voltage, where the voltage value immediately follows,
the number of the cooler unit comes after the colon. Except for the status query with
"S", there is another colon and then a numerical value. There are one-button
commands for maintenance and diagnosis.

 # U:float Spannung einstellen

 # I:[0|1|2]:float Stromstärke einstellen + halten

 # T:[0|1|2]:float Temperatur einstellen + halten

 # C:[0|1|2]:[0|1] Cooler-Schalter aus/ein

 # F:[0|1|2]:[0|1] Coller-Fan aus/ein

 # S:[0|1|2] Status melden

 # R Nullstromwerte messen

 # V Spannung messen

 # P Flags und angeschlossene Einheiten

 # A Stromstärken messen

The respective department proceeds according to this scheme after a valid job ID
has been found. The methods find () and split () of the examined string object are
used. The area of validity is checked for the number of the cooler unit and the
switching status. The conversion from a string to a floating point number is protected
by try and except in order to prevent program crashes. The feedback takes place in
the tuple (art, act, value)

Command: u: 8.47
from 999.999.999.999:99999
Content = u: 8.47
U: Current voltage: 8.43
: error free: 0

art contains the job ID, act the message and value the error number. The 0 stands for
OK. The error number is at the end of the string because it can be easily found and
isolated by the requesting process. A sequence of the following type provides the
index in a list of plain text messages or function names that are to be displayed or
executed in the event of an error.

The mode for entering commands is selected at the beginning of the declaration part
of the program. A local radio network (WLAN with access point), the ESP32 as an
access point or, if both were deselected with False, the PC keyboard are available.
Of course, the functions including parse () can also be called manually via REPL.

Auswahl der Betriebsart Netzwerk oder Tastatur:

Netzwerk: Setzen Sie genau !_EINE_! Variable auf True

WLANconnect=False # Netzanbindung ueber lokales WLAN

ownAP=False # Netzanbindung ueber eigenen Accessppoint

beide False ->> Befehlseingabe über PC + USB in Testphase

Falls WLANconnect=True:

Geben Sie hier die Credentials Ihres WLAN-Accesspoints an

#mySid = 'YOUR_SSID'; myPass = "YOUR_PASSWORD"

The connection to the WLAN access point then looks like this.

**

WLAN-Connection

**

if WLANconnect and (not ownAP):

 nic = network.WLAN(network.STA_IF) # erzeuge WiFi-Objekt

 nic.active(True) # Objekt nic einschalten

 #

 MAC = nic.config('mac') # binaere MAC-Adresse abrufen +

 myMac=hexMac(MAC) # in Hexziffernfolge umwandeln

 print("STATION MAC: \t"+myMac+"\n") # ausgeben

 # Verbindung mit AP im lokalen Netzwerk aufnehmen,

 # falls noch nicht verbunden, dann

 # connect to LAN-AP

 if not nic.isconnected():

 nic.connect(mySid, myPass)

 # warten bis die Verbindung zum Accesspoint steht

 print("connection status: ", nic.isconnected())

 while not nic.isconnected():

 blink(0.8,0.2,True)

 print("{}.".format(nic.status()),end='')

 sleep(1)

 # Wenn verbunden, zeige Verbindungsstatus & Config-Daten

 print("\nconnected: ",nic.isconnected())

 print("\nVerbindungsstatus: ",connectStatus[nic.status()])

 print("Weise neue IP zu:","10.0.1.101")

 nic.ifconfig(("10.0.1.101","255.255.255.0","10.0.1.20", \

 "10.0.1.100"))

 STAconf = nic.ifconfig()

 print("STA-IP:\t\t",STAconf[0],"\nSTA-NETMASK:\t",\

 STAconf[1],"\nSTA-GATEWAY:\t",STAconf[2] ,sep='')

If the connection worked, a separate, fixed IP address that does not yet exist in the
WLAN is assigned because the ESP32 is running as a UDP server. An IP assigned
by the WLAN access point via DHCP can have different values, which is not a good
idea for a server.

If the connection is to be made via radio, a socket is now set up with a timeout of 2
seconds. The timeout ensures that the receiving loop can do other things than just
listening to incoming requests.

If no radio communication is desired, an input instruction waits for commands, which
are then also passed to the parser. The socket is set to 999.999.999.999:99999 in
order to distinguish the feedback from a radio request. Entering "e" ends the program
properly. This is also possible by pressing the button or the flash button on the
ESP32.

We can test the radio traffic in the WLAN very well with the help of the packetsender
tool. The commands shown above can be entered and sent there using the
keyboard. The responses from the ESP32 are also output. We'll take a closer look at
this in the next episode.

It is worth taking a look at a few very interesting lines at the beginning of the program.

import britannic_18 as zs

from charset import CharSet

......

oledKanal=[5,6,7]

for i in range(3):

 iBus.writeToBus(1<<oledKanal[i])

 d=OLED(i2c,128,32)

 d.setYoffset(0)

 d.clearAll()

c=CharSet(zs,d) # stellt Routinen fuer grossen ZS bereit

putValue und putSymbol werden dekoriert, damit das richtige

Display mit der Nummer dpn angesteuert werden kann.

def switchToChannel(f):

 def g(dpn, *args, **kwargs):

 chnl=oledKanal[dpn]

 print("Kanal:",chnl,"calling",f.__name__)

 iBus.writeToBus(1<<chnl)

 xn=f(*args,**kwargs)

 return xn

 return g

c.putSymbol=switchToChannel(c.putSymbol)

c.putValue=switchToChannel(c.putValue)

d.clearAll=switchToChannel(d.clearAll)

d.writeAt=switchToChannel(d.writeAt)

After importing the character set britannic_18 and the CharSet class, we define a list
that translates the number of the cooler unit (0..2) into the channel numbers of the
I2C multiplexer (5..7). Then the three OLED objects are generated and initialized.
The for loop switches the respective channel.

The declaration of an instance c of the CharSet class is followed by the declaration of
the switchToChannel function, which takes a function f as an argument and returns
another function g, which is defined in switchToChannel. switchToChannel is a so-
called decorator, which is used to modify the functions transferred to it. This happens
without the functions themselves being changed. Additional instructions are only
inserted before or after the transferred function is called. With the help of the last 4
lines shown, we are able to adapt two methods of the CharSet and OLED classes to
our needs. g represents the modified function f. g sets the desired channel and then
calls the transferred function f with the original parameters. The new function is now
simply given the name of the original function.

You will remember that in order to control several OLED displays, the correct channel
must first be set on the TCA9548. This is exactly what our decorator does by adding
the channel number n in front of the previous call in the parameter list - g (dpn, *
args, ** kwargs).

D.clearAll () becomes d.clearAll (n),
d.writeAt ("test", 0,0) becomes d.writeAt (n, "test, 0,0) and off
d.putSymbol (c, xpos = 0, ypos = 0, show = True) becomes d.putSymbol (n, c, xpos =
0, ypos = 0, show = True) ...

An otherwise necessary adaptation of the classes has become superfluous due to
the decoration of the methods. If you would like to learn more about closures and
decoraters, I recommend that you use the link and download the PDF document.
There I described the facts in several steps. Simple examples illustrate the benefits of
the programming behind the two terms.

Here is the entire program listing:

No, I prefer not to insert it here, because I think it is much better if you download the
approx. 13 pages of the program text and display them in a separate window, ideally
in Thonny. Then you can go through the blog and the program in parallel and the
colorful display in Thonny improves the overview.

http://www.grzesina.de/az/Closures%20und%20Decorators.pdf
http://www.grzesina.de/az/Closures%20und%20Decorators.pdf
http://www.grzesina.de/az/peltier/cooler/thermobox.py
http://www.grzesina.de/az/peltier/cooler/thermobox.py

I hope this article not only provides suggestions and know-how on the subject of
Peltier elements. I would be delighted if you could find suggestions and inspirations
for other applications in it.

In the next episode we will use an ESP32 together with a TFT color display with
touchscreen (320x240 pixels) to control the cooler battery. Some programming
techniques from this episode are also used there again. Until then, have fun building,
programming and of course cooling.

