

Abbildung 1: Innenleben

This article is also available as a PDF document in Deutsch and Englisch.

Do you also know sentences like: "Do you still check the temperature in the
greenhouse?" or "Shouldn't we turn on the heating in the greenhouse after all?
There's supposed to be frost tonight!" With us, these questions will be a thing of the
past in the future. Because from now on mine wakes up

WLAN-Gärtner

about the temperatures in and around the greenhouse. Together with my Linux
server and the smartphone, the triumvirate takes care of the registration and
recording of the temperatures in the open air, in the greenhouse and in the heatable
climate box with the particularly sensitive plants located in it. In addition, I can turn on
the heating from anywhere or simply activate the automatic. How this is done, I'll tell
you in this blog post, welcome!

http://www.grzesina.de/az/guardian/freezeguardian_ger.pdf
http://www.grzesina.de/az/guardian/freezeguardian_eng.pdf

Hardware

The basic version of the WLAN gardener consists of the following parts:
1 ESP8266 D1 mini
2 DS18B20 mit 3m Kabel
1 DS18B20 mit 1m Kabel
1 Mininetzteil 230VAC zu 5VDC
1 OLED-Display
1 Relais High-Level-getriggert
1 Netzschalter 250V / 1A
1 Kunststoffgehäuse#
1 MB-102 Breadboard Steckbrett mit 830 Kontakten

Optional für höhere Schaltleistung
1 Stepup-Converter
1 Hochlastrelais (z. B. aus einer alten Waschmaschine oder Mikrowelle)
1 Einbausteckdose
1 1m Kabel 3x1,5 mit Schuko-Stecker
diverse Kleinteile wie Kabelschelle, Schrauben, …

I programmed the gardener in MicroPython. I have put together below what is
needed for this.

Software

For flashing and programming the ESP32:
Thonny oder
µPyCraft
packetsender for testing the ESP32 as a TCP/UDP server

Used Firmware:

MicropythonFirmware
Please choose a stable version

MicroPython-Programs:
temperatur.py zum Ermitteln der Zuordnung der Sensoren
xmitter1.py die Firmware für den Gärtner
oled.py und
ssd1306.py Module zum Betrieb des Displays

MicroPython - Language - Modules and Programs

You can find detailed instructions for installing Thonny here. There is also a description
of how the Micropython firmware is burned onto the ESP chip.

MicroPython is an interpreter language. The main difference to the Arduino IDE,
where you always and exclusively flash entire programs, is that you only have to
flash the MicroPython firmware once at the beginning on the ESP32 before the

https://www.az-delivery.de/products/d1-mini
https://www.az-delivery.de/products/2er-set-ds18b20-mit-3m-kabel
https://www.az-delivery.de/products/2xds18b20wasserdicht
https://www.az-delivery.de/products/copy-of-220v-zu-5v-mini-netzteil
https://www.az-delivery.de/products/0-96zolldisplay
https://www.az-delivery.de/products/relais-modul
https://www.az-delivery.de/products/breadboard
https://www.az-delivery.de/products/mt3608-dc-dc-step-up-modul-1
https://github.com/thonny/thonny/releases/download/v3.3.10/thonny-3.3.10.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://github.com/dannagle/PacketSender/releases/download/v7.0.5/PacketSender_x64_v7.0.6.exe
https://micropython.org/download/all/
https://micropython.org/download/all/
http://www.grzesina.de/az/gaertner/temperatur.py
http://www.grzesina.de/az/gaertner/xmitter1.py
http://www.grzesina.de/az/gaertner/oled.py
http://www.grzesina.de/az/gaertner/ssd1306.py
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html
https://micropython.org/download/all/

controller understands MicroPython instructions. You can use Thonny, µPyCraft or
esptool.py for this. I have described the process for Thonny here.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. This is exactly what bothers me
about the Arduino IDE. You simply save an enormous amount of time if you can do
simple tests of the syntax and hardware through to trying out and refining functions
and entire program parts via the command line before you knit a program out of it.
For this purpose I also like to create small test programs over and over again. As a
kind of macro, they combine recurring commands. From such program fragments,
entire applications can develop.

Autostart

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

Testing programs

If the program is to start autonomously when the controller is switched on, copy the
program text into a newly created blank file. Save this file under boot.py in the
workspace and upload it to the ESP chip. The program starts automatically the next
time it is reset or switched on.

In between, Arduino IDE again?

If you want to use the controller together with the Arduino IDE again later, simply
flash the program in the usual way. However, the ESP32 / ESP8266 then forgot that
it ever spoke MicroPython. Conversely, every Espressif chip that contains a compiled
program from the Arduino IDE or the AT firmware or LUA or ... can easily be provided
with the MicroPython firmware. The process is always as described here.

http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen
http://grzesina.de/az/die_entwicklungsumgebung_thonny.html#flashen

Die Schaltung

The circuit uses a relay to switch higher currents and higher voltages than the
ESP8266 can handle. A relay contains one or more switching contacts. Only the
switch is not closed or opened by hand, but operated by an electromagnet. Because
the magnetic coil already requires currents of around 60mA, which a GPIO pin of the
controller cannot deliver, a switching transistor must also be used. The relay named
in the component list already contains everything necessary. The connection S can
be connected directly to a GPIO pin.

With a relay, we always have at least two circuits, the control circuit, which supplies
the magnet coil with low currents, and the load circuit, which is completely decoupled
from it, which can switch high currents and voltages.

We build the test circuit on a breadboard. This makes it easier to exchange parts.
The superstructure is supplied via the USB cable from the PC. The productive
system is later supplied, if everything works as required, by a mini power supply unit
with 5V output voltage directly from the 230V network. That is easily enough for the
coil current of the load relay. At this point, however, there must be a warning.

• The relay specified in the parts list has a switching volume of around 300W.
This means that the relay can only handle currents up to approx. 10A at
voltages up to 30V.

• The connection for the switch contact SK of the load circuit is only a short
distance (2mm) + to the components and conductor tracks (signal line S) of
the control circuit.

Abbildung 2: Relais von unten

Therefore it is not a good idea to switch voltages higher than 50V with
this relay. A breakdown from the 230V network to the low-voltage side
primarily endangers you and, on the other hand, your structure up to
and including the PC. Touching 230V lines is life-threatening!

• • A suitable high-load relay must be used to switch higher outputs, for example
heating devices. Such components can be found in disused washing
machines or microwave ovens.

• • Do not handle circuits carrying 230V if you do not know exactly what
you are doing. If necessary, get help from a professional.

Abbildung 3: Basisschaltung

The relay in the circuit shown can switch low-voltage halogen lamps or LED lighting
fixtures without any problems. In the first case, in addition to the lighting, there is also
a heat flow that cannot be neglected, and which does justice to a mini heater.
Otherwise, the sensors record the temperatures in the surrounding area and in the
greenhouse / garden house (3m cable) and in the heatable plant box (1m cable). The
ESP8266 keeps these values ready for querying from a client, smartphone or Linux
server (also Raspi). The latter can thus also record a climate curve over the entire
winter.

The operating status is shown on an OLED display. The blue LED is on port 2 and
therefore parallel to the built-in LED. However, you will not notice the latter if the
whole thing is built into a housing. The additional LED can then be attached so that it
is clearly visible. It flashes every second and represents the server's heartbeat.

When using the power supply unit, we must ensure that parts that are connected to
the mains voltage cannot be touched. For this purpose I made a carrier board that
offers space for the boost converter in addition to the encapsulated power supply. I
absolutely needed it because my relay has a 12V excitation coil. Alternatively, you

could use a separate 12V plug-in power supply and use a step-down converter to
derive the 5V for the ESP8266.

Abbildung 4: Trägerplatine

Abbildung 5: Netzteil

The circuit board layout is printed on absorbent paper with a laser printer and ironed
onto the cleaned copper layer of the circuit board with an iron and then etched. How
that works in detail I have descibed here.

http://www.grzesina.de/az/guardian/Traegerplatine%20esp8266+Netzteil.pdf
http://www.grzesina.de/avr/platinen/buegeln.html
http://www.grzesina.de/az/guardian/Traegerplatine%20esp8266+Netzteil.pdf

Die Programmierung des Servers

The sensor data is transmitted to the client on the smartphone or the Linux box via
UDP. This protocol works without a connection, which means that the transmission is
not secured by handshaking. It is quick and easy to use for this. Different participants
can request data from the server, even more so the server can also send this data
without requests from clients. This makes it possible, for example, to send
emergency calls to a cell phone, even if it has not asked.

There is also a minor drawback. The thing with the emergency calls only works in the
send / receive area of the ESP8266 and mobile phone / Linux box. Nevertheless, you
can contact the Linux machine from anywhere via HTTP, because a second TCP
web server will run on it, which can be reached worldwide. So that the apple doesn't
have to fall far from the pear tree, we will of course also write this web server in
Python in the second part of the series. Linux and especially the Raspi offer Python
as a native language.

But first of all, let's talk about the operating software for the ESP8266, which we can
essentially group into two parts, processing sensor data and server services. In
addition, a few issues run on the OLED display.

from time import time,sleep,sleep_ms,ticks_ms

import network

import socket

import ubinascii

from machine import Pin, I2C, ADC

import os, sys

from oled import OLED

from ssd1306 import SSD1306

from onewire import OneWire

from ds18x20 import DS18X20

**

Geben Sie hier Ihre eigenen Zugangsdaten an

mySid = 'here goes your ssid'; myPass = "here goes your pass"

monitor=("10.0.1.110",9181)

We import some modules, then the data for network access via WLAN router follow.
The Windows machine in the development network can receive packetsender data
on 10.0.1.110:9181 through the program

i2c=I2C(-1,scl=Pin(5),sda=Pin(4))

print(i2c.scan())

def blink(pulse,wait,inverted=False):

 if inverted:

 blinkLed.off()

 sleep_ms(pulse)

 blinkLed.on()

 sleep_ms(wait)

 else:

 blinkLed.on()

 sleep_ms(pulse)

 blinkLed.off()

 sleep_ms(wait)

After we have created an I2C object, we check whether the display reports on the
bus. It has the device address 60 = 0x3C. The blink () function is used in various
places to display the operating status. The optional parameter inverted must be set to
True when called, if the LED is low-active, i.e., as in our case, lights up when the
cathode is pulled to GND by the GPIO pin.

Then we define the LED connection and give the first signs of life, three short flashes.
The display object is instantiated and the display is deleted.

led=Pin(2, Pin.OUT) # D4@esp8266

blinkLed = led

LED aus

led.value(1)

ledOn = const(0)

ledOff= const(1)

for i in range(4):

 blink(50, 200, True)

d=OLED(i2c)

d.clearAll()

The next sequence operates the DS18B20 sensors on the one-wire bus. We create a
bus object, determine the number of sensors and read out their ROM code. In roms
we have a dictionary that assigns the ROM code to the location. This means that we
can read out exactly the assigned sensor at any time. Its value is temporarily stored
in a second dict. The assignment of the sensors to the locations is done with the
temperatur.py program, which we will come to later.

If no sensors were found, the program cannot work properly and the start is aborted.
Otherwise we get a message on the display and the output of the pairs Location:
ROM code on a terminal.

ds_pin = Pin(13) # D7@esp8266

ds_sensor = DS18X20(OneWire(ds_pin))

chips = ds_sensor.scan()

numberOfChips = len(chips)

roms = {

 "Gartenhaus": bytearray(b'(\x1dt$\n\x00\x00i'),

 "Pflanzenbox":bytearray(b'(p&\x12c \x01\x03'),

 "Umgebung": bytearray(b'(\x02\xd3\x8e1!\x03>'),

 }

temperature= {

 "Gartenhaus": 0,

 "Pflanzenbox":0,

 "Umgebung" :0,

 }

if numberOfChips==0:

 warnung = "NO SENSOR DEVICE"

 d.writeAt(warnung,0,0)

 print(warnung)

 sys.exit()

else:

 chipsFound="FOUND {} DEVICES".format(numberOfChips)

 d.writeAt(chipsFound,0,0)

 print('Found DS devices: ')

 for chip in roms.items():

 print(chip)

The relay is on GPIO pin 14. It is HIGH-active, a 1 at the output thus closes the NO
(Normally Open) contact against switch contact SK.

heater=Pin(14,Pin.OUT) # D5@esp8266

heater.value(0)

heaterState=0

heaterState==heater.value()

timeDelay=2

We'll declare a few more functions. Only the function sendTemperature () deserves
special mention. It takes the address of the network device to which the data should
be sent. This can be the address of a requesting device or a device whose address
we define ourselves, such as monitor above.

The function queries the sensors and compiles a response string from it, which is
then sent. Sensors that cannot be read out do not cause the program to be
terminated, they merely result in a false report. The try-except sections take care of
that. The function returns the temperature value in the plant box so that it can be
accessed more quickly.

def sendTemperatur(adr):

 global temperature

 answer="T;"

 try:

answer="{0:6.2f};".format(ds_sensor.read_temp(roms["Umgebung"]

))

 except:

 answer="Umg. fehlt;"

 try:

h="{0:6.2f};".format(ds_sensor.read_temp(roms["Gartenhaus"]))

 answer=answer+h

 except:

 answer=answer+"Haus fehlt;"

 try:

h="{0:6.2f}\n".format(ds_sensor.read_temp(roms["Pflanzenbox"])

)

 answer=answer+h

 except:

 answer=answer+"Box fehlt\n"

 print(answer)

 s.sendto(answer,adr)

 return h

The following boot sequence establishes the connection to the WLAN access point.
A network interface object is created and activated. During the registration process
we get flashing signals (long-short) from the blue LED until we have been assigned a
temporary IP by the DHCP server in the access point. So that we don't just get the
status message as a number, we have the plain text displayed in the terminal using
the connectstatus dictionary.

Because we are programming a server, we are not satisfied with the prescribed IP,
we assign the 10.0.1.180 ourselves. Of course, this IP must not be assigned
otherwise in the LAN. We read in the connection data again and provide them for
information and verification on the terminal and on the OLED display.

********************* Bootsequenz ************************

nic = network.WLAN(network.STA_IF) # erzeugt WiFi-Objekt nic

nic.active(True) # nic einschalten

Verbindung mit AP im lokalen Netzwerk aufnehmen

if not nic.isconnected():

 # Zum AP im lokalen Netz verbinden und Status anzeigen

 nic.connect(mySid, myPass)

 # warten bis die Verbindung zum Accesspoint steht

 print("Status: ", nic.isconnected())

 while nic.status() != network.STAT_GOT_IP:

 print(".",end='')

 blink(800,200,inverted=True)

Wenn verbunden, zeige Status und Config-Daten

print("\nStatus: ",connectStatus[nic.status()])

STAconf =

nic.ifconfig(("10.0.1.180","255.255.255.0","10.0.1.180", \

 "10.0.1.180"))

STAconf = nic.ifconfig()

print("STA-IP:\t\t",STAconf[0],"\nSTA-NETMASK:\t",STAconf[1],\

 "\nSTA-GATEWAY:\t",STAconf[2] ,sep='')

d.writeAt(STAconf[0],0,1)

d.writeAt(STAconf[1],0,2)

d.writeAt(STAconf[2],0,3)

Now we create a socket object and bind it to all of our network interfaces (we only
have one) and the port number 9003. We set a short timeout of 0.1 seconds. This is
enough to register incoming requests and ensures that the program does not get
stuck in the receiving loop, but continues to run through the while loop after this time.
In this way, other things can be done in addition to radio communication.

*******************Socket for UDP-Server******************

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.bind(('', 9003))

print("waiting on port 9003...")

s.settimeout(0.1) # timeout, damit 'while True:' durchlaeuft

d.writeAt("waiting on 9003",0,4)

if heaterState==1:

 d.writeAt("Heizung ist AN ",0,5)

else:

 d.writeAt("Heizung ist AUS",0,5)

auto=0

In the service loop, we take care of upcoming tasks. In the first place is the query of
the receive buffer of the UDP socket.

If a request is received, it is read and we note the IP and the port number of the
client. But because in most cases there is nothing to read, the receive loop that we
call with s.recvfrom () only waits 0.1 seconds and then throws an exception, which we
catch with try - except. At the moment, no treatment is planned for this case, which is

why we only write one pass in the except branch. That is the instruction to just do
nothing.

But if we had a request, then it has to be parsed. This is what the following if
structures do. We use a trick to save storage space. We achieve the automatic
heating control by assigning the variable rec, which always contains the current
command, with "heat on" or "heat off". These commands are recognized and
executed in the further course of the parsing chain. Here we benefit from the fact that
the temperature of the plant box is returned as an individual value.

getTemp startet eine Konvertierung in den DS18B20-Chips

sendTemp schickt die Werte an die anfragende Station und überprüft ob die
Heizung ein- oder ausgeschaltet werden muss.

autoOn aktiviert die automatische Heizungsregelung

autoOff deaktiviert die Automatik

e beendet das Programm

heizenAn schaltet das Relais im Heizkreis ein

heizenAus schaltet das Relais im Heizkreis aus

********************* Dienstschleife *********************

while 1:

 gc.collect()

 try:

 rec,adr=s.recvfrom(150)

 rec=rec.decode().strip("\r\n")

 print(rec)

 if rec=="autoOn":

 auto=1

 s.sendto("M;"+rec,adr)

 if rec=="autoOff":

 auto=0

 s.sendto("M;"+rec,adr)

 if rec=="getTemp":

 ds_sensor.convert_temp()

 s.sendto("M;started",adr)

 if rec=="sendTemp":

 print("Senden")

 boxtemp=sendTemperatur(adr)

 if auto==1:

 try:

 boxtemp=float(boxtemp)

 if boxtemp < 3:

 rec="heizenAn"

 else:

 rec="heizenAus"

 except:

 pass

 if rec=="heizenAn" :

 heater.value(1)

 d.writeAt("Heizung ist AN ",0,5)

 heaterstate=heater.value()

http://www.grzesina.de/az/glossar.html#parser

 s.sendto("M;Heizung ist AN",adr)

 if rec=="heizenAus":

 heater.value(0)

 d.writeAt("Heizung ist AUS",0,5)

 heaterstate==heater.value()

 s.sendto("M;Heizung ist AUS",adr)

 if rec=="e":

 heater.value(0)

 d.clearAll()

 d.writeAt("*** SHUT OFF ***",0,5)

 break

 rec=""

 except:

 pass

 blink(50,950,True)

A message is sent to the client for each job, from which it can evaluate whether the
command was recognized. The blink command closes the loop. As long as the LED
is flashing, we know that the server is still running.

Test

Before we can test our program, we have to assign the sensors to their location and
register them. This is possible with the little brother of our server program
temperatur.py. If we connect a sensor to us, we start the program. It should
recognize the sensor and output its ROM code in the terminal. The assignment
results from the future location at which you want to attach it. Enter the new ROM
code in the roms list using copy & paste. Repeat the process until the third sensor
has been recognized and entered. Now transfer the list elements to the xmitter1.py
program and save it.

temperatur.py
from time import sleep, sleep_ms, time, ticks_ms

from machine import Pin, reset

from onewire import OneWire

from ds18x20 import DS18X20

ds_pin = Pin(13)

ds_sensor = DS18X20(OneWire(ds_pin))

chips = ds_sensor.scan()

numberOfChips = len(chips)

roms = [

 bytearray(b'(\x1dt$\n\x00\x00i'), #GHaus

 bytearray(b'(\x02\xd3\x8e1!\x03>'), # ambiant

 bytearray(b'(p&\x12c \x01\x03'), # box

]

print('Found DS devices: ')

for chip in chips:

 print(chip)

led = Pin(2, Pin.OUT)

LED aus

led.value(1)

ledOn = 0

ledOff= 1

taste = Pin(0, Pin.IN)

**

def blink(dauer):

 start = ticks_ms()

 current = start

 end = start+dauer

 led.value(ledOn)

 while current <= end:

 current=ticks_ms()

 led.value(ledOff)

def ds1820Error():

 while True:

 blink(200)

 sleep_ms(200)

 blink(200)

 sleep_ms(200)

 blink(1000)

 sleep_ms(1000)

**

if len(roms) < 1:

 #ds1820Error()

 pass

http://www.grzesina.de/az/gaertner/temperatur.py
http://www.grzesina.de/az/gaertner/temperatur.py

ds_sensor.convert_temp()

sleep_ms(750)

for rom in chips:

 print(rom)

 print(ds_sensor.read_temp(rom))

print(" ")

The packetsender program now allows us to carry out the first tests on our unit. We
start the program xmitter1.py, which you can also download as a whole, on the
ESP8266. If the correct connection data is entered in packesender, we enter one of
the commands listed above and send it off. We can see from the response from the
server whether the transmission was successful.

Ausblick

The next episode deals with the programming of a client on a Linux machine that
sends a request to the ESP8266 every 10 minutes via time control via a cron job to
query the temperatures. The client must manage the data in two files. The
temperature data will be in the gh_daten file, and there will be a second message file
in which everything is entered that is preceded by the M; arrives at the client. These
can also be things that the server sends on its own.

At the end of the day, the temperature data should be stored in a daily file so that it is
permanently available. For example, by calling up a browser from a mobile phone or
tablet.

http://www.grzesina.de/az/gaertner/xmitter1.py

There are also two hardware buttons to be able to switch the heating manually on
site and we are giving the server a soil moisture sensor so that it can notify us when
the plants need water.

Until then, have fun tinkering and programming.

