Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

Most recently, it was about sending text messages over the cellular network via SMS. In
this episode too, ESP32 and SIM808 come into play again. They form a kind of server or
relay station to which text messages can be sent for control.

However, the controller is also able to send time-controlled or event-controlled messages
itself. The cell phone or the PC, the Raspi, etc. is then the switching and receiving center,
SMS functionality is required. Usually it will be the mobile phone or tablet and because the
distance between the SIM808 and the mobile phone does not matter, there is no distance
limit, provided that there is sufficient network coverage. The LCD keypad is actually
superfluous because direct control of the remote ESP32 unit using the buttons is out of the
guestion anyway. Nevertheless, a display does a good job when starting the relay unit and
for other status messages. And - one button is essential, | use it as an emergency brake!
Welcome to the fourth part of

GSM and GPS with MicroPython on the ESP32

Hardware - some growth

There is a little more hardware compared to Part 3. After all, we want to integrate at least
one external radio unit into the project. Well, in the list below you can find all of the parts
for the current project. Almost all of this has already been used in Part 1, Part 2 and Part 3

http://www.grzesina.de/az/gps/teil4/gps_mcp_teil4_ger.pdf
http://www.grzesina.de/az/gps/teil4/gps_mcp_teil4_ger.pdf
http://www.grzesina.de/az/gps/teil4/gps_mcp_teil4_eng.pdf
http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_eng.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf
http://www.grzesina.de/az/gps/teil3/gps_mcp_teil3_eng.pdf

and of course also described in detail there. Of course, we reuse these components. In the
third part of the series a SIM card was added, because without it you will not be able to
send or receive SMS messages. And now we will add another option to the functionality of
the relay station. For this purpose | have provided an ESP8266 together with an LDR
resistor and another BMP280 as a radio sensor as an example. Instead of the LDR, any
other sensor that can deliver analog signals can of course be used. In this example, an
analog voltage at the AO pin of the ESP8266 is sampled on the external radio unit. Other
sensors such as DS18B20 (temperature), DHT22 AM2302 (humidity and temperature),
GY-302 BH1750 (light sensor), etc. can of course be used just as well thanks to the
various MicroPython modules that are available for this. We already used the module for
the BMP280 in episode 3. As a rule, the modules can be easily adapted to your own
needs. If necessary, a module from a library of the Arduino IDE is reworked for
MicroPython. Most of the time, the result is a readable source text and the class methods
do exactly what you want by adapting them.

Here is the list of ingredients for the new cooking session. After all, there are two main
courses this time

ESP32 Dev Kit C V4 unverlotet oder dhnlich

LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen
SIM 808 GPRS/GSM Shield mit GPS Antenne fir Arduino

Battery Expansion Shield 18650 V3 inkl. USB Kabel

Li-Akku Type 18650

12C 1IC Adapter serielle Schnittstelle fiir LCD Display 1602 und 2004

Widerstand 10kQ

GY-BMP280 Barometrischer Sensor fir Luftdruckmessung

SIM-cARD (beliebiger Anbieter)

RRINARRRRR(-

NodeMCU Lua Lolin V3 Module ESP8266 ESP-12F WIFI Development Board
unverlotet

Foto Widerstand Photoresistor Licht Sensor Modul LDR5528 oder
KY-018 Foto LDR Widerstand Diode Photo Resistor Sensor fiir Arduino

|_\

The circuit for the relay station is first taken over 1: 1 from part 2. Later you decide for
yourself which parts you want to leave out, replace or add new ones. The project is
scalable in every direction. The technical basics for the implementation can be found in
this article.

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?variant=32437206548576
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/sim808-uno-mikrocontroller-bundle-sonderpreis?variant=6330999832603
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289
https://www.az-delivery.de/products/azdelivery-bmp280-barometrischer-sensor-luftdruck-modul-fur-arduino-und-raspberry-pi?variant=12239814426720
https://www.az-delivery.de/products/nodemcu-lua-lolin-v3-modul-mit-esp8266-12e-unverlotet?_pos=2&_sid=edf92f55a&_ss=r
https://www.az-delivery.de/products/nodemcu-lua-lolin-v3-modul-mit-esp8266-12e-unverlotet?_pos=2&_sid=edf92f55a&_ss=r
https://www.az-delivery.de/products/foto-widerstand-photoresistor-licht-sensor-modul-ldr5528-1?_pos=3&_sid=6132df33d&_ss=r
https://www.az-delivery.de/products/licht-sensor-modul?_pos=1&_sid=6aab6cd8d&_ss=r

SDA

¢A 0G9BLE:
= ndino

SCL

GNOEESIAS 4401 =& M

ONOTIAS

AG

ANOS

\S

N9

10k 110k

-+

GPS-Tracker mit ESP32
Autor: Jurgen Grzesina

rel
N
=
Q
)
L

- ' 7
You will receive a more legible copy of the illustration in DIN A4 with the Download der
PDE-Datei .

Die Software

Used Software:
For flashing and programming the ESP:

Thonny oder

uPyCraft
ncat as UDP-Server for Windows

paketsender for testing the ESP8266 as UDP-server

Used Firmware:
MicropythonFirmware

MicroPython-Module und Programme

GPS-Modul fur SIM808 und GPS6MV2(U-Blocks)

LCD-Standard-Modul

HD44780U-12C-Erweiterung zum LCD-Modul

Keypad-Modul

Button Modul

BMP208-Modul

i2cbus-Modul fiir standardisierten Zugriff auf den Bus

Das erweiterte Hauptprogramm relais.py

server.py das Programm auf der externen Sensoreinheit mit dem ESP8266

http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://nmap.org/dist/nmap-7.91-setup.exe
https://github.com/dannagle/PacketSender/releases/download/v7.0.5/PacketSender_x64_v7.0.6.exe
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/gps/teil4/gps.py
http://www.grzesina.de/az/gps/teil4/lcd.py
http://www.grzesina.de/az/gps/teil4/hd44780u.py
http://www.grzesina.de/az/gps/teil4/keypad.py
http://www.grzesina.de/az/gps/teil4/button.py
http://www.grzesina.de/az/gps/teil4/bmp280.py
http://www.grzesina.de/az/gps/teil4/i2cbus.py
http://www.grzesina.de/az/gps/teil4/relais.py
http://www.grzesina.de/az/gps/teil4/server.py

Tricks and information on MicroPython

The interpreter language MicroPython is used in this project. The main difference to the
Arduino IDE is that you have to flash the MicroPython firmware on the ESP32 before the
controller understands MicroPython instructions. You can use Thonny, pPyCraft or
esptool.py for this. For Thonny, | described the process in the first part of the blog on this
topic.

As soon as the firmware is flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first having
to compile and transfer an entire program. This is exactly what bothers me about the
Arduino IDE. When developing the software for this blog, | made ample use of the direct
dialog with the ESP32. The spectrum ranges from simple tests of the syntax to trying out
and refining functions and entire program parts. For this purpose, | also like to create small
test programs, as in the previous episodes. They form a kind of macro because they
combine recurring commands.

Such programs are started from the current editor window in the Thonny IDE using the F5
key. This is faster than clicking the start button or using the Run menu. | also described the
installation of Thonny in detail in the first part.

Let's reach into MicroPython's bag of tricks for a while. How does it work with the UDP
transfer of information?

When you talk to your ESP32 over the USB line, you are using the message transfer
principle. Entries via the keyboard are sent from the PC to the ESP32. REPL,
MicroPython's command line interpreter, receives the message on the ESP32 and
decodes it. Then the interpreter of the ESP32 looks what to do. The information is parsed,
i.e. tapped for the meaningful content. The desired action is then triggered, the result of
which is returned to the PC by the ESP32, implicitly as a print command. The receives this
message and displays it in the terminal window.

UDP transfers are basically similar. But there are two differences. The transmission path is
the radio link instead of the cable, and the transmission is not secured with UDP. This
means that the UDP protocol neither ensures that the message has arrived, nor that the
message has been transmitted unadulterated or completely. Furthermore, there is no
guarantee that the information packets (aka datagrams) will arrive in the order in which
they were sent. In the case of information with little content, the order does not matter
because the content is transmitted in a packet. That is the case with our project. When
transmitting measured values, it usually does not matter if a measured value is incorrectly,
incompletely or not at all transmitted during rapid scanning.

There is one decisive advantage for this: UDP is quick and easy to use. And the protocol,
just like TCP, can also transfer data in both directions between client and server.

If we assume that the WLAN connections already exist, the programming of the UDP client
and server is limited to a few lines.

Client:

clientexample.py
#import socket
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)

s.bind(('', 9181)) # IP comes from boot-section
s.settimeout (5.0)
while 1:
s.sendto ("get:poti™, ("10.0.3.99",8888))
response, addr = s.recvfrom(256)

print ("Antwort von {} empfangen:{}".format (addr, response))
weltere Schleifenbefehle

Server:

serverexample.py
import socket
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)

s.bind(('', 8888)) # IP comes from boot-section
s.settimeout (5.0) # Blockadebrecher
while 1:

request, addr = s.recvfrom(256)

print ("Auftrag von {} empfangen:{}".format (addr, request))
Auftrag decodieren, parsen, Aktion ausldsen
ergebnis="irgend ein Wert"

s.sendto ("Messergebnis {}".format (ergebnis) ,addr)

weitere Schleifenbefehle

sendto () is the replacement for print () and the input command is replaced by receivefrom

0

The information arriving at the server in the request variable is encoded as a byte object
and should first be decoded into a string before further processing, which is easier to
parse. The sender is in the variable addr. The server parses the request, takes care of the
requested action and sends the result back to the sender.

As shown here, the data transmission between the external sensor unit (ESP8266 + LDR)
and ESP32 in the SMS relay also works. The scope of the actual program parts is greater,
because the parsing requires a large amount of programming effort. | have therefore put
this part at the beginning because of the clearer representation of the core of the UDP
transmission. We'll take a closer look at the corresponding parts of the program later. Here
is a photo of a server unit in advance. Lower left the BMP280 and right the LDR. On the
ESP8266 there are still 5 pins free for additional sensors or actuators.

Addressing external sensors via SMS

The installation of Thonny, the programming environment, was dealt with in Part 1 of the
series, as was the flashing of the MicroPython firmware. The corresponding firmware must
of course also be flashed on the ESP8266. Today we have two separate units to program
and test. This has to happen one after the other. First we prepare the ESP32.

The main purpose of the SIM8B08 in this blog episode is the relay function. That's why |
don't go into the topic of GPS anymore, that was the main topic in Part 1 and Part 2. We
still want to briefly take a look at the function of the GSM board, because we need it now
because of its SMS messaging capability to send.

Because the UARTO interface is reserved for REPL, a second interface must be available
for the conversation with the SIM808. The ESP32 provides such as UARTZ2. The
connections for RXD (reception) and TXD (transmission) can even be freely selected. For
full duplex operation (send and receive simultaneously) the RXD and TXD connections
from the ESP32 to the SIM808 must be crossed. You can understand this on the circuit
diagram. The default values on the ESP32 are RXD = 16 and TXD = 17. The connection is
organized by the gps.py module.

This begins when the SIM808 is switched on. If you followed my recommendation and
soldered a cable to the power button, you can now switch on the SIM808 with the following
command, provided that this cable is connected to pin 4 of the ESP32 and the instance g
of the class gps.GSM has already been created.

>>> from gps import *

>>> g=GSM(4)
| (157300) uart: ALREADY NULL
GPS initialized, Position:49.28869,11.47506
SIM808 initialized
GSM module initialized
>>> g.simOn()
>>>

Commands to the SIM808 are transmitted in AT format. There are a huge number of
commands that can be looked up in a PDF file. But don't worry, a few of these commands
are enough for our project. Two of them are combined in the methods init808 () and
deinit808 ().

def init808(self):

self.u.write("AT+CGNSPWR=1\r\n")
self.u.write("AT+CGNSTST=1\r\n")

def deinit808(self):
self.u.write("AT+CGNSPWR=0\r\n")
self.u.write("AT+CGNSTST=0\r\n")

AT + CGNSPWR = 1 switches on the power supply to the GPS module and AT +
CGNSTST =1 activates the transmission of the NMEA sentences to the ESP32 via the
serial interface UART2. The controller receives the information from the SIM808 and
provides it in the manner described above via the terminal and LCD.

The listing now follows to study the gps module in more detail. The three included classes
GPS, SIM808 (GPS) and GSM (SIM808) build up a uniform namespace through
inheritance, which we imported with from gps import *. Therefore all methods are available
in the object g of the class GSM. If GSM is not needed (no SMS transfer), you can also
enter via the SIM808 class, as was done in Part 2.

The SIM808 class takes care of hardware control and data transfer to and from the
ESP32. The GPS class contains methods for decoding the NMEA sentences from the
SIM808, for displaying them on the display and for calculating the course. Finally, the GSM
class provides the methods for SMS transfer and management. This is exactly what we
will now deal with and then take a closer look at the UDP data traffic.

File: gps.py

Author: J. Grzesina

Rev. 1.0: AVR-Assembler

Rev. 2.0: Adaption auf Micropython

Die enthaltenen Klassen sprechen einen ESP32 Controller an.
Dieses Modul beherbergt GPS, GPS6MV2 und SIM808 und GSM.

GPS stellt Methoden zur Decodierung u. Verarbeitung der
NMEA-Saetze SGPGAA und SGPRMC bereit, welche die wesentlichen
Infos zur Position, Hoehe und Zeit einer Position liefern.

In addition to the AT commands for switching on the GPS unit and opening the UART
connection on the SIM808, there are a few more commands for SMS operation, which we

will now examine.

AT commands must always end with a\ r\ n (carriage return and line feed =\ xOD and \
X0A) so that they are recognized as such by the SIM808. These characters are also

generated, for example, when you press the Enter key. In the case of the AT commands,
however, the characters must be specified separately, as in the examples below.

The SIM808 also sends back answers or results with \ r\ n. Except for user data, such as
message texts, the only important thing for us is whether the response corresponds to the
expected character string. There is therefore a method that does exactly this check,
simSendCmdChecked (). It returns True as the result if the check was successful, False
otherwise. The method takes the AT command string, the expected response, the
command type (command or data) and two optional timeout values as parameters. The
first of these limits the time for the entire response from the SIM808, the second defines
the time limit per character. Both prevent the method from seizing up and blocking the
whole program. The class attribute CMD (value = 1) identifies the AT command as a
command via the type parameter. When responding to a command, the rest of the UART
buffer on the SIM808 is flushed, i.e. emptied, after the predefined response has been
recognized, which is of course not desired for a text response. The simWaitForResponse
() method is used to read in and check the response from the SIM808.

Here is an example. In order for SMS operation to be possible, the 7-bit text mode must be
switched on. If the action was successful, the answer contains an 'OK’, the existence of
which we have to check.

simSendCmdChecked ("AT + CMGF =1 \r\n","OK\r\n", CMD)

AT + CMGF = 1: switches to 7-bit text mode, thus enabling plain text SMS mode. With AT
+ CMGF = 0, the SIM808 works in PDU mode (from Physical Data Unit). In this mode, the
7-bit characters are embedded in an 8-bit data stream, which does not result in plain text,
but only hieroglyphs in the output.

The status of SMS messages allows them to be roughly selected, for example with a list
command. The stat variable contains one of the following strings in addition to other
possible strings: "ALL", "REC UNREAD" or "REC READ". This value is built into the
command by the format instruction instead of the curly braces and is enclosed by the two
double quotation marks. The entire AT command is enclosed in single quotation marks.

simSendCommand (‘AT + CMGL ="{}", 1 \ r \ n".format (stat))

The '1' ensures that the status of the listed messages does not change when they are
listed. Please note that the status string must be in quotation marks. The above command
sends the following character string to the SIM808:

AT + CMGL ="REC UNREAD", 1,\r\n

When sending SMS messages, the command must first be given the number of the
connection. The SIM808 replies with a ">".

simSendCmdChecked (AT + CMGS =" + phoneNbr + ™\ r\ n', ">", CMD)
If ">" was recognized, the message can be sent.

simSendCommand (mesg)

The end of the message is announced to the other station by sending an end-of-text
character (chr (26) =\ x1A = Ctrl + 2).

In order to read an SMS message from the SIM808's memory, its index must be known.
After sending the read command, the UART buffer of the SIM808 can be read out. It
contains the text of the message. We wait until at least one character is available and then
read in number of characters bytes. The value of this variable should be adapted to the
length of the message. Please note, however, that in addition to the text, other information
such as date, time and status contribute to the total length. The '1' ensures that the status
does not change when listing.

simSendCommand ("AT + CMGR = {}, 1\ r\ n" .format (index))

simWaitForData ()

simReadBuffer (number of characters)

Messages can also be deleted by specifying the index.

simSendCmdChecked ("AT + CMGD ={}, 0 \r\ n" .format (index), "OK \ r\ n", CMD)
SMS operation is only possible after a SIM card has been recognized. The command
simSendCommand ("AT + CPIN? \r\ n")

checks that.

The methods of the GSM class use the commands from the SIM808 class to execute. The
following list compiles the SMS methods.

GSM Positions-Parameter: -

optionale Parameter: switch=sp

Ruckgabe: -

sp = Nummer des Schaltausgangs am ESP32

gsminit Positions-Parameter:

optionale Parameter:

Ruckgabe:

Bemerkung:

SIM808 eingeschaltet, Volle Funktionalitat an SIM-Karte
vorhanden?

gsmisPowerUp Positions-Parameter:
optionale Parameter:
Ruckgabe: True/False
Bemerkung:

sendet AT\r\n testet auf OK

gsmPowerOn Positions-Parameter:
optionale Parameter:
Ruckgabe:
Bemerkung:

Board anschalten

gsmPowerReset Positions-Parameter: -
optionale Parameter: -
Rickgabe: -

Bemerkung:
Board reset

gsmCheckSimStatus

Positions-Parameter: -
optionale Parameter: -
Ruckgabe: +CPIN: READY
Bemerkung:

Prift aus SIM-Karte

gsmSendSMS

Positions-Parameter: HandyNummer, Nachricht
optionale Parameter: -

Ruckgabe: Nachricht

Bemerkung:

Sendet Nachricht an HandyNummer

gsmAreThereSMS

Positions-Parameter: stat

optionale Parameter:

Ruckgabe: Index der ersten gefundenen Nachricht
Bemerkung:

Sucht nach Nachrichten mit dem Status in stat

gsmReadAll

Positions-Parameter: stat

optionale Parameter: cnt=anzahlZeichen

Ruckgabe: hochstens cnt Zeichen aus dem UART-Puffer
Bemerkung:

gsmFindSMS

Positions-Parameter:

optionale Parameter: stat, cnt

Ruckgabe: Liste der Indizes der Nachrichten mit dem Status in
stat

Bemerkung:

Es werden nur so viele Indizes erfasst, wie SMS-Inhalte in den
UART-Buffer passen

gsmReadSMS

Positions-Parameter: index

optionale Parameter: mode=0

Ruckgabe: (Status, Phone, Date, Time, Message)

Bemerkung:

Holt die Nachricht mit der Nummer index aus dem SIM808-
Speicher und gibt den Inhalt als Tupel zurlick. mode=1 andert
den Status der Nachricht im SIM808-Speicher nicht. Eine 0 setzt
den Status auf "REC READ".

gsmShowAndDelete

Positions-Parameter: stat

optionale Parameter: disp=None, delete=None

Ruckgabe:

Bemerkung:

Erstellt eine Liste der Indizes der SMS vom Status in
stat.Optionale Ausgabe auf dem LCD/OLED; fremde Mails und
werden stets geldscht,eigene nur, wenn delete=True

gsmDeleteSMS

Positions-Parameter: index
optionale Parameter:

Rickgabe: True/False
Bemerkung:

Loscht die angegebene Nachricht

Some of the GSM methods are used for internal processing and control. The main
program relais.py shows how the class is used.

The application program relais.py has become considerably more extensive compared to
the pure GPS application from Part 3. This is mainly due to the integration of the WLAN
functionality, but also to the added example for querying the wireless sensor via UDP. The
program has a lot to offer. In detail it demonstrates:

 Time-controlled SMS (every x hours, minutes ...)

* event-controlled SMS (temperature outside of a range)

* SMS on demand (reply to an SMS)

» GPS tracker (distance exceeded or waypoint transmission)
* Transmit measured value

* Query radio sensor via UDP

The last point is the core topic of this post, everything else was already discussed in
episode 3. That's why we're now looking at the relevant program snippets. Then we shed
light on the server program on the ESP8266.

The network connection can be established either via the access point of the WLAN router
or directly via the access point of the ESP32. Of course, not only one wireless sensor can
be addressed. Only one thing has to be considered: The ESPs must all be in the same
WLAN subnet. This is specified by the WLAN router if one is to be used. This is not
absolutely necessary because the ESP8266 can provide its own access point. Both
approaches have their advantages and disadvantages.

With WLAN router as access point:

Both the ESP32, with the SIM808 attached, and the ESP8266 start in station mode.
Several ESP8266 can easily be addressed by the ESP32 simply by specifying the IP
address. Different port numbers offer a further differentiation. Addressing via broadcast is
possible.

With ESP8266's own access point:

The ESP32 must connect to a single access point when it starts. Only the server on this
station can therefore be addressed. So that further ESP8266 can be addressed, the
ESP32 would have to terminate the first WLAN connection in order to then establish
another. But that is much more time-consuming.

Because it also makes the test environment easier, | implemented the first solution.
Nevertheless, you can switch to the second. On the ESP32 this is done by pressing the
RST button on the LCD keypad at startup. The display informs about the time. If the button
is not pressed, the second solution starts and the ESP32 tries to find the access point of
the ESP8266 specified in the program.

The first solution is commented out on the ESP8266. By uncommenting this area and
commenting out the router solution, the operating mode can also be changed here. Of
course, you can also establish a control with a button similar to that on the ESP32.

You can find the following pieces of code in the relais.py file. They cannot be run
individually, but only represent the basis for your discussion. For a more detailed study, |
suggest downloading the program and going through it parallel to the meeting.

These import lines, right at the beginning, prepare network access.

Ein weiteres Steuerflag aktiviert die Abfrage des Funksensors

Die Zeitsteuerung fir die Fernabfrage wird eingerichtet

Eine Struktur und eine Funktion fur die Herstellung der WLAN-Verbindung werden
definiert.

Die Job-Routine fiir die Konversation mit der Funkeinheit leitet auch deren Antwort als
Nachricht an die angegebene Handynummer weiter.

Herstellen der WLAN-Verbindung

d.writeAt (STAconf[2],0,1)
sleep (3)
d.clearAll ()

As soon as the WLAN connection is established, the UDP client is started. We create a
socket for the IP-V4 family (AF_INET) and define the data exchange via datagrams, which
means that we agree on UDP as the transmission protocol. Then we bind the socket to the
IP address specified above and the port number 9181. Both entries must be passed as
tuples, hence the two opening and closing brackets. The inner pair marks the 2's tuple, the
outer pair the parameter list of the function.

It is important to set a timeout, otherwise the program will get stuck in the s.recvfrom ()
command in the queryJob () function. The specified time in seconds is also important and
must be selected in such a way that a response from the radio sensor can actually arrive
during this period. The destination address in receiver must also be specified as a tuple.
The display informs about the connection data and then we are already in the main loop.

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.bind(("'"', 9181)) # IP comes from boot-section
s.settimeout (5.0)

d.clearAll ()

d.writeAt ("Sock established",0,0)

sleep (2)

d.writeAt ("TARGET IS AT:",0,0)

d.writeAt ("{}:{}".format (targetlIP, targetPort),0,1)

print ("Socket established, waiting...")
receiver=(targetIP, targetPort) # Address has to be a tuple

An if sequence for the control is added to the main loop. The position is not relevant, | put
the code at the end of the while loop. The query is called when this is requested by the
gueryFlag and when the waiting time for it has expired. Without the second condition,
messages would be sent non-stop, which is certainly not what you want.

if (Trigger & queryFlag)==queryFlag and time () >= queryEnde:
querydJob ()
queryEnde=time () +tqueryBase

You probably want to test the program's UDP client right now. Of course you do, so let's
get started! Have you registered the ESP32 with its MAC on the WLAN router? If not,
please do so now, because if the router does not know the ESP32, it is very likely that it
will not let it into the network. At least a well-behaved router should behave like this - for
security reasons!

If the modules linked at the beginning bmp280.py, button.py, gps.py, hd44780u.py,
i2cbus.py, keypad.py and Icd.py are in the bottle of the ESP32, the UDP client can be
tested. In relais.py the variable Trigger in line 72 should be set to 0. Start the relais.py
program with F5 in the editor window and let the start process run through while holding
down the RST key on the LCD keypad. After various status messages, the LCD shows
"TARGET IS AT' with the IP of the ESP8266 station and 'Socket established, waiting ..." is
output in the terminal window. Then the REPL prompt '>>>" appears.

Now you need a UDP server that the ESP32 can contact. The nmap package provides
one with the ncat application. The network cat turns your PC into a UDP server. Download
and install the freeware. The ncat.exe file can be found in the nmap installation directory.
Open a Powershell, change to the installation directory and call up the ncat file as follows.
The IP 10.0.1.107 is that of my Windows box, please replace it with the IP of your
workstation.

ncat -vv -1 10.0.1.1207 9000 -u

Tip:

To quickly open a Powershell in the installation directory, look for the directory in Explorer
with a few clicks. Now right-click the directory entry while holding down the Shift key and
select "Open Powershell window here" from the context menu.

If ncat is running, switch to Thonny's terminal window and enter the following instruction:

>>> g.sendto ("Hello Server”, ("10.0.1.107", 9000))
12th
>>>

REPL tells you that 12 characters were sent and if 'Hello Server' appears in the ncat
window, you have won.

2. Nmap

PS C:\Program Files (x86)\Nmap> ncat | 10.06.1.167: 9000
Ncat: Version 7.91 (https://nmap.org/ncat)

Ncat: Listening on 10.6.1.107:9600
Ncat: Connection from 106.06.1.199.
Hallo Server,

UDP server as measurement servants

Now you are surely curious how the program on the ESP8266 controls the wireless
sensor. | have already shown at the beginning how this works with UDP transfer. The
usual dedicated modules are used to query sensors, which is nothing new. The graphic
illustrates the overall situation. Dashed arrows indicate the route via a router, the solid
arrow stands for the direct connection.

SMS-RelaisStation

mit UDP-Funksensoren
J. Grzesina

Rev1.0 2021

SERVER
10.0.2.102:9000

UD
uDpPVW

A

d SERVER
10.0.2.101:9001

WLAN-ROUTER

10.0.2.199:9100

10.0.2.100:9000
SERVER

The radio transmission is based on a simple, self-made protocol that you can of course
modify as you wish and, for example, expand with a checksum.

Commands to the ESP8266 have the format action: device [: magnitude]. The answer
looks like this: magnitude: value. So you have the option of installing several sensors or
actuators in a radio unit and accessing them via device and magnitude. You will see that
the WLAN parts of the program are structured similarly to those of the control program on
the ESP32. But because the ESP8266 does not have a display, status messages are
given by a flashing light. For this | use the low-active, blue LED on pin 2, which controls
the blink () function with different times and invertible levels. A dict (ionary) and another
function ensure that the connection is again readable in plain text in the terminal window.

The structure of an access point on the ESP8266 between the lines Setup accesspoint
and Setup accesspoint end is commented out because the example should run via the
access point of the WLAN router. If you do not want this, please remove the comment
characters in this area and add it to the area between Setup Router connection and Setup
Router connection end. This can be done very quickly if you mark the area and remove the
comment marks with Alt + 4 or set them with Alt + 3.

Don't forget to enter your SSID and password, otherwise the connection won't work. You
may also have to register the ESP8266 like its brother as a valid device on the access
point so that it is accepted. Of course, the IP address, network mask, gateway and DNS
address must also match your network. Until the connection to the router is established,
the LED flashes every second.

The server start is the next station in the program. The completion of the preparations is
indicated by a flashing signal with long - short - short - short.

An action is first searched for in the while loop. With get or set comes the next level where
a valid device is searched for. This allows different sensors to be taken into account.

If only one value can be queried, this is determined, as in the Poti example. If the device
can come up with several values, like the BMP280, then the name of the measured
variable to be determined must follow. The situation is similar in the set branch, which is
not discussed further here. Of course it is useful if, for example after switching a relay, the
switching status is sent back. To query a BMP280, the modules bmp280.py and i2cbus.py
must have been loaded into its flash memory. If everything goes to your satisfaction, copy
the text of the server.py program into the boot.py file. After uploading to the ESP8266, like
the ESP32, it starts autonomously. You can see from the flashing signals during the start
phase and the heartbeat whether the program is running correctly.

After each measurement job, either the result or, if it fails, an error message is sent to the
ESP32. He now has to decide whether to forward the message as an SMS message or
keep it to himself and dispose of it. Each control option on the ESP32 can of course also
assign a radio job itself. It just depends on what you program and enable through the flags,
you are the boss!

#server.py

kkhkhkkhkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkkk*k*x ImportgeSChaeft khkhkkhkkhkkhkkhkhkhkkhkhkhkkhkhkhkkhkkh%k
import esp

esp.osdebug (None)

import os

import gc # Platz fuer Variablen schaffen
gc.collect ()
try:
import usocket as socket
except:

import socket
import ubinascii
import network
from machine import ADC,Pin,I2C
from time import sleep,time
import sys
from bmp280 import BMP280
from i2cbus import I2CBus
adc=ADC (0)
print ("ADC Initialized: ",adc.read())
taste=Pin (0, Pin. IN)
blinkLed=Pin (2, Pin.OUT)
request = bytearray(160)
act=bytearray (30)
response=""
Pintranslator fuer ESP8266-Boards
LUA-Pins DO D1 D2 D3 D4 D5 D6 D7 D8
ESP8266 Pins 16 5 4 0 2 14 12 13 15
SC SD FL L
i2¢c=I2C(-1,scl=Pin(5),sda=Pin(4))
b=BMP280 (i2c)

#********************Variablen deklarieren R e d b b b b b b S dh dh Ib b b b o

else: # device mit mehreren GroBen
response="ERROR:invalid device call\n"
else: # device als eigene Grole
device=rest

if device.upper ()=="POTI":
poti=str (adc.read())
response=device.upper () +":"+poti+"\n"
elif ... further single quantity devices
else:

response="ERROR:invalid device call\n"
else:
response="ERROR:invalid action call\n"
else:
response="ERROR:invalid command"
s.sendto (response, addr)
except OSError as e:
#fprint (e.args[0])
pass
if taste.value()==0:
print ("Mit Flashtaste abgebrochen")
sys.exit ()
blink(0.1,0.9, inverted=True)
#sleep (1)

If you subsequently try to access REPL again with Thonny, you will find that the ESP8266
boots immediately after a reset and does not let you into the system. Sure, we wanted that
too. Unfortunately, Ctrl + C and clicking on the stop sign, screaming and wailing, do not
help to get the controller to stop either.

| know that this happens and that's why the ESP8266 has a built-in emergency brake, the
flash button. Press and hold until the REPL prompt appears in the terminal window. To
continue or not to continue ... that is the question, the answer to which is introduced in the
fifth from last line of the program.

You can try it out for the test of the ESP8266. Is the controller flashed with MicroPython?
Are the modules also in Flash, together with the server program text in boot.py? Then,
ESP8266 cold start - RST! Is the heartbeat coming? Great!

What you now need is a flexible UDP client that you can use to test the reception and
return of the ESP8266 unit. The freeware packetsender is very suitable for testing. You
can enter control commands here by hand, send them to the server on the ESP8266 via
UDP and thus test the response of the program. Then the ESP32 takes over the command
if everything works perfectly. So now install the software and set the desired UDP port of
your computer at the very bottom, here UDP: 9181.

Packet Sender - IPs: 10.0.1.10, 2003:f3:7720:4a00:e5b7:54c7:7458:3289, 2003:3:7720:4a00:8001: 1de%:ba3... — O

File Tools Multicast Help

Name [LDR
ASCII |get:poti 0|
HEX |67 65 74 3a 70 6f 74 69 Q|| LoadFie |

Address [0.0.1.101 € | Port [5000 @ | Resend Delay i upp v|[send || sawe

(ClearLog () LogTraffic | Savelog | [SaveTrafficPacket| |Copy to lpboard|
Time FromIP From Port ToIP ToPort Method Error ASCII Hex
& 12:01:25.011 10.0.1.... 9000 You 9181 ubpP POTI:428 504F54493A 343238
% 12:01:24.987 You 9181 10.0.1.101 9000 ubP get:poti 67 6574 33 70 6f 74 69
& 12:00:22.955 10.0.1.... 9000 You 9181 ubP POTI:234 504F54493A323334
& 12:00:22.849 You 9181 10.0.1.101 9000 ubP get:poti 67 6574 3a 70 6f 74 69

T e e e

Packet Sender - IPs: 10.0.1.10, 2003:f3:7720:4a00:e5b7:54c7:7458:3289, 2003:f3:7720:4300:8001:1de%:ba3... =—— O

File Tools Multicast Help

Name |LDR
ASCII lget:bmpZBO:both 0 I
HEX [67 65 74 3 62 6d 70 32 38 30 3a 62 6f 74 68 Q| LoadFie

Address [0.0.1.101 € |Port (9000 € | Resend Delay | upp vI[send || sawe

ClearLog 6) LogTraffic | Savelog | |SaveTrafficPacket| |Copy to Cliboard|
Time FromIP FromPort ToIP ToPort Method Error ASCII Hex A
& 12:03:08.038 10.0.1.... 9000 You 9181 uDP TEMP:25.45\nPRES:1015.12\n 54454D 50 3A 32
% 12:03:07.231 You 9181 10.0.1.101 9000 UDP get:bmp280:both 67 6574 3a 62 6d
& 12:01:25.011 10.0.1.... 9000 You 9181 uDP POTI:428 504F54493A34
& 12:01:24.987 You 9181 10.0.1.101 9000 UDP get:poti 6765743a706f 7
(*. 12.0027 655 10N1_ GNNN Ve o121 11ND DT 24 SN AF 84 40 2A 2):» N

N | [

Now simply enter the requests that the ESP32 would otherwise send by hand in ASCII.
Send sends the data to the ESP8266. If you get the right answers, then this part of the
project will also work. Otherwise you still have the emergency brake to touch up the
program.

The final test

To do this, assign one of the flag values to the trigger variable in line 72 and start the
program.

timeFlag = 0b00000001 # interval control

distanceFlag = Ob00000010 # distance alarm

tempFlag = 0b00000100 # temperature alarm

orderFlag = 0b00001000 # SMS request via SMS

gueryFlag = 0b00010000 # Queries from external sensors via UDP
Trigger = 0 # Enter the flags of the services here

After the connection is established, your cell phone should reply with a new SMS
message. Also test the other options one after the other. With SMS on demand you send a
message with the content 'weather' to the ESP32. As a receipt, you will receive the
temperature and air pressure values from the BMP280 on the ESP8266.

For the autonomous start of the ESP32 only the text of the program relais.py has to be
copied into the file boot.py. The upload to the controller completes the project.

So now you are equipped with sufficient know-how to further develop the project and adapt
it to your needs. | wish you a lot of fun and success.

Oh yes - there was something else! Our SIM808 still has a hit, you can of course also
make calls with it. In the next episode, I'll tell you how to do this and how to connect a
keypad. See you!

More download links:

PDF in deutsch
PDF in english

http://www.grzesina.de/az/gps/teil4/gps_mcp_teil4_ger.pdf
http://www.grzesina.de/az/gps/teil4/gps_mcp_teil4_eng.pdf

