Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDEF in English

Today it's about sending text messages over the cellular network via SMS. ESP32
and SIM808 form a kind of server or relay station to which text messages can be sent
for control purposes, but which is also able to send messages itself, time-controlled
or event-controlled. The cell phone or the PC, the Raspi ... is then the switching and
receiving center. And because the distance between the SIM808 and the mobile
phone is irrelevant, there is no distance limit, provided that there is sufficient network
coverage. The LCD keypad is actually superfluous because direct control of the
remote ESP32 unit is out of the question anyway. Nevertheless, a display does a
good job when starting the relay unit and for further status messages when
debugging. Perhaps more interesting than an LCD is a small OLED display, purely
for maintenance purposes, but this can also be done via SMS. So welcome to the
third part of

GPS and GSM with MicroPython on the ESP32

Hardware growth - the SIM card

There is little in terms of hardware compared to Tei2. How? You have not read Parts
1 and 2 and are new here? All right, persuaded, in the following list you will find all
the parts for the current project. Almost all of it has already been used in Part 1 and

http://www.grzesina.de/az/gps/teil3/gps_mcp_teil3_ger.pdf
http://www.grzesina.de/az/gps/teil3/gps_mcp_teil3_ger.pdf
http://www.grzesina.de/az/gps/teil3/gps_mcp_teil3_eng.pdf
http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_eng.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf

Part 2 and of course also described in detail there. Of course, we reuse these
components. A new addition is a SIM card, because without it you will not be able to
send or receive SMS messages. Of course, it is possible that not all sensors and / or
actuators can be connected directly to the relay station because of the length of the
cables. Then it wouldn't be bad if there was a radio link for it. Therefore, in the next
episode, | will show you how something like this can be implemented very easily with
the UDP protocol via WLAN connections. For this purpose, I'll use an ESP8266 with
an LDR resistor as a wireless sensor as an example. Other sensors such as
DS18B20 (temperature), DHT22 AM2302 (humidity and temperature), GY-302
BH1750 (light sensor), etc. can be used just as well thanks to the various
MicroPython modules that are available for this. But now first about the GSM
connection, we want to text a little with our ESP32.

Here is the list of ingredients, the recipe for the menu comes later.

ESP32 Dev Kit C V4 unverlétet oder ahnlich

LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen
SIM 808 GPRS/GSM Shield mit GPS Antenne fiur Arduino

Battery Expansion Shield 18650 V3 inkl. USB Kabel

Li-Akku Typ 18650

12C 1IC Adapter serielle Schnittstelle fur LCD Display 1602 und 2004
Widerstand 10kQ

GY-BMP280 Barometrischer Sensor fur Luftdruckmessung

SIM-Karte (beliebiger Anbieter)

RRANRRRRRR

The circuit for the project is first taken over 1: 1 from part 2. Later you decide for
yourself which parts you want to leave out, replace or add new ones. You can find
the program options for implementation in this article.

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?variant=32437206548576
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/sim808-uno-mikrocontroller-bundle-sonderpreis?variant=6330999832603
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289
https://www.az-delivery.de/products/azdelivery-bmp280-barometrischer-sensor-luftdruck-modul-fur-arduino-und-raspberry-pi?variant=12239814426720

SDA

¢A 0G9BLE:
= ndino

SCL

GNOEESIAS 4401 =& M

ONOTIAS

AG

ANOS

\S

N9

10k 110k

-+

GPS-Tracker mit ESP32
Autor: Jurgen Grzesina

J

You will receive a more legible copy of the illustration in DIN A4 with the Download of

the PDF-File .

The Software

Used Software:
For flashing and programing the ESP:

Thonny oder
uPyCraft

Used Firmware:
MicropythonFirmware

MicroPython-Module und Programme

GPS-Modul fur SIM808 und GPS6MV2(U-Blocks)
LCD-Standard-Modul

HD44780U-I2C-Expansion for LCD-Modul

Keypad-Modul

Button Modul

BMP208-Modul

i2cbus-Modul for standardized access to the bus

Das Hauptprogramm relais.py

testkeypad.py for testing the key decoding of the LCD keypad

http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/gps/teil3/gps.py
http://www.grzesina.de/az/gps/teil3/lcd.py
http://www.grzesina.de/az/gps/teil3/hd44780u.py
http://www.grzesina.de/az/gps/teil3/keypad.py
http://www.grzesina.de/az/gps/teil3/button.py
http://www.grzesina.de/az/gps/teil3/bmp280.py
http://www.grzesina.de/az/gps/teil3/i2cbus.py
http://www.grzesina.de/az/gps/teil3/relais.py
http://www.grzesina.de/az/gps/teil3/testkeypad.py

Tricks and information on MicroPython

The interpreter language MicroPython is used in this project. The main difference to
the Arduino IDE is that you have to flash the MicroPython firmware onto the ESP32
before the controller understands MicroPython instructions. You can use Thonny,
MPyCraft or esptool.py for this. For Thonny, | described the process in the first part of
the blog on this topic.

After the firmware has been flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. | made ample use of it when
developing the software for this blog. The spectrum ranges from simple tests of the
syntax to trying out and refining functions and entire program parts. For this purpose,
as in the previous episodes, | will create small test programs. They form a kind of
macro because they combine recurring commands.

Such programs are started from the current editor window in the Thonny IDE using
the F5 key, which is faster than clicking the start button or using the Run menu. | also
described the installation of Thonny in detail in the first part.

The classes GPS, SIM808 and GSM

Well, the most important thing for a GPS application is: How do | address the GPS
services of the SIM808? Oh yes, right - this article should not (only) be about GPS
but primarily about GSM. So the question must be different. Maybe: How can you text
with the SIM808 and the ESP32? This is exactly what we want to look at now. The
AT commands allow us to easily handle the diverse properties of the SIM808 module.
| used a very small part to build the GSM class for my project. Together with the GPS
class for localization and the SIM808 class for hardware control, you will find GSM
peacefully united in the gps.py module.

For newly added readers, put the SIM808 module into operation. You have to slide
the small slide switch right next to the pipe socket for the power supply, 5V to 12V,
towards the SIM808 chip. A red LED lights up next to the GSM antenna socket. You
will surely find that very easy, because all solder points and interfaces are well
documented on the board.

A little further to the left of the GSM antenna socket is the start button. You can also
use the circuit diagram above for orientation. Press the start button for approx. 1
second, then two more LEDs light up between the other two antenna sockets, the
right one flashes every second. The active GPS antenna should already be
connected to the left screw socket. It is best to place them near a window.

So that you don't have to open the housing of your GPS receiver every time to start
the SIM808, | recommend that you do the same and solder a cable to the hot
connection of the start button. Viewed from above, it is the right one if the pipe socket
also points to the right. You can now start the SIM808 by defining a GPIO pin of the
ESP32 as an output and switching from high to low and back to high for one second.
| intended pin 4 for this.

http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_ger.pdf

§10Z-01-01
UNIHO NI NNN A8 O3N91530

"% °Z°€N-8n3 BOBWIS

When the constructor for the GPS object is called, the number of the pin is
transferred together with the display object as a parameter. Before you send the
following commands to the ESP32, please upload the modules linked at the
beginning to the controller's flash memory. The commands are entered via the
command line in the terminal area.

>>> from gps import GPS,SIM808,GSM
>>> from Icd import LCD

>>> from machine import ADC, Pin, 12C
>>> from keypad import KEYPAD

>>> j2¢=12C(-1,Pin(21),Pin(22))

>>> d=LCD(i2¢,0x27,cols=16,lines=2)
>>> g=GSM(4,d)

>>> k=KEYPAD(35)

If no display object (d) is passed, there is of course no output on the LCD or OLED.
However, there is no error message, the key control works normally. Almost all
important results are output in the terminal window.

The GPS class does most of the work. As mentioned, the constructor expects a
display object that must be defined in the calling program or must already be known.
A serial channel to the SIM808 is opened at 9600 baud, 8,0,1, then the instance
variables are set up to record the GPS data.

Here is an overview of the most important methods of the GPS class.

The waitForLine () method does what its name says, it waits for a NMEA sentence
from the SIM808. The type of NMEA sentence that is expected is given as a
parameter. If the record is complete and free of errors, it is returned to the calling
program. In the current version of the program, $ GPRMC and $ GPGGA records can
be received. They contain all relevant data such as validity, date, time, geographical
latitude (latitude, from the equator to the poles in degrees) and longitude (longitude
from the zero meridian +/- 180 °) as well as height above sea level in meters. Similar
to the existing code, further data records can easily be recorded and decoded by the
SIM808.

The method decodeLine () takes the received record and tries to parse it. This
method contains a local function that converts the angle specifications into the
formats degrees, minutes, seconds and fractions, degrees and fractions, or degrees,
minutes and fractions, according to the specification of the mode attribute.

The method printData () outputs a data record in the terminal window. showData ()
returns the result to the display. Because only a two-line display is used with the LCD
keypad, the display must be divided into several sections. The keys on the keypad
take control.

Because the UARTO interface is reserved for REPL, a second interface must be
available for communication with the SIM808. The ESP32 provides such a UART?2.
The connections for RXD (reception) and TXD (transmission) can even be freely
selected. For full duplex operation (send and receive simultaneously) the RXD and
TXD connections from the ESP32 to the SIM808 must be crossed. You can
understand this on the circuit diagram. The default values on the ESP32 are RXD =
16 and TXD = 17. The connection is organized by the gps.GPS class.

This begins when the SIM808 is switched on. If you followed my recommendation
and soldered a cable to the power button, you can now switch on the SIM808 with
the following command, provided that this cable is connected to pin 4 of the ESP32.

>>> g.SIMOn ()

Commands to the SIM808 are transmitted in AT format. There is a huge variety of
commands in a PDF-File where they can be studied in detail. But don't worry, a few
commands are enough for our project. Two of them are summarized in the methods
init808 () and deinit808 (), a few more are presented in the GSM chapter.

def init808(self):
self.u.write("AT+CGNSPWR=1\r\n")
self.u.write("AT+CGNSTST=1\r\n")

def deinit808(self):
self.u.write("AT+CGNSPWR=0\r\n")
self.u.write("AT+CGNSTST=0\r\n")

AT + CGNSPWR = 1 activates the GPS module and AT + CGNSTST = 1 activates
the transmission of the NMEA sentences to the ESP32 via the serial interface
UART2. The controller receives the information from the SIM808 and provides it in
the manner described above via the terminal and LCD.

https://usermanual.wiki/Document/SIM80020SeriesAT20Command20ManualV110.518805514/view

In addition to the hardware control of the SIM808, the gps.py module also contains
the necessary commands for the smaller GPS system GPS6MV2 with the Neo 6M
chip from UBLOX. This module is not controlled via AT commands, but via its own
syntax. The SIM808 and GPS6MV2 classes are not interchangeable because they
have different APIs.

The listing now follows to study the gps module in more detail. The three included
classes GPS, SIM808 (GPS) and GSM (SIM808) build a uniform namespace through
inheritance. Therefore, all methods are available in an object of the GSM class. If
GSM is not needed (no SMS transfer), you can also enter via the SIM808 class, as
was done in Part 2.

The SIM808 class takes care of the hardware control and the data transfer to the
ESP32. The GPS class contains methods for decoding the NMEA sentences from
the SIM808, for displaying them on the display and for calculating the course. Finally,
the GSM class provides the methods for SMS transfer and message management.
These messages need not relate solely to GPS data. Rather, | kept the gps.GSM
class neutral so that it can also be used in other projects. In the relais.py program
you will not only find a GPS approach, but also the implementation of a BMP280
guery via GSM as an example for the integration of further sensors. The BMP280
and I12CBus classes required for this have already been presented in Part 2.

wirwn

File: gps.py

Author: J. Grzesina

Rev. 1.0: AVR-Assembler

Rev. 2.0: Adaption auf Micropython

Die enthaltenen Klassen sprechen einen ESP32 als Controller
an.

Dieses Modul beherbergt die Klassen GPS, GPS6MV2 und SIM808
GPS stellt Methoden zur Decodierung und Verarbeitung der NMEA-
Saetze

SGPGAA und S$SGPRMC bereit, welche die wesentlichen Infos =zur
Position, Hoehe und Zeit einer Position liefern. Sie werden
dann

angezeigt, wenn die Datensaetze als "gueltig" gemeldet werden.
Eine Skalierung auf weitere NMEA-Satze ist jederzeit moglich.
GPS6MV2 und SIM808 beziehen sich auf die entsprechende
Hardware.

from machine import UART,I2C,Pin

import sys

from time import sleep, time, ticks ms

from math import *

AKAKKAKKAKAKAAKAKARKAKAKARKA KKk hkhkkkkk* Beginn GSM
****************************PS
class GPS:

#
gDeg=const (0)

GSM - or Simsen for the ESP32

In addition to the AT commands for switching on the GPS unit and opening the UART
connection on the SIM808, there are a few more for SMS operation, which | will
briefly discuss. In principle, AT commands must be terminated with a \ r \ n (carriage
return and line feed) so that they are recognized as such by the SIM808. The SIM808
sends back responses or results. Except for user data such as message texts, the
only important thing here is whether the response corresponds to the expected one.
There is therefore a gsm method that does exactly this check. The class attribute
CMD (value = 1) identifies the AT command as a command. For commands, the
remainder of the UART buffer is automatically emptied after the response from the
SIM808 has been read in.

simSendCmdChecked ("AT + CMGF =1\r\n","OK\r\n", CMD)
AT + CMGF = 1: switches to text mode and thus enables SMS mode

The status of SMS messages allows their selection, for example, with a list
command. stat therefore contains one of the following strings: "ALL", "REC
UNREAD" or "REC_READ". This value is built into the command by the format
instruction.

simSendCommand (AT + CMGL ="{}", 1\ r \ n".format (stat))
The '1' ensures that the status does not change when listing.

When sending SMS messages, the command must first be given the number of the
connection. The SIM808 replies with a ">".

simSendCmdChecked (‘AT + CMGS =" + phoneNbr + " \r\ n', ">", CMD)
If ">" was recognized, the message can be sent.
simSendCommand (mesg)

The end of the message is announced to the other station by sending an end-of-text
character (chr (26)).

In order to read an SMS message from the SIM808's memory, its index must be
known. After sending the read command, the UART buffer of the SIM808 can be read
out. It contains the status, date, time and text of the message.

"AT + CMGR = {} \r\ n" .format (index))

Messages can also be deleted by specifying the index.

simSendCmdChecked ("AT + CMGD = {}, 0 \r \ n" .format (index), "OK \ r\ n", CMD)
SMS operation is only possible after a SIM card has been recognized. The command

simSendCommand ("AT + CPIN? \ r\ n")

checks this. The SIM card must not be secured by a PIN.

Some of the GSM methods are used for internal processing and control. The main
program relais.py shows the application of the methods of the class.

The application program relais.py has become a little more extensive compared to
the pure GPS application from Part 2. This is due to the various examples for
guerying sensors and SMS message traffic. The program has a lot to offer. In detail it
demonstrates:

* Time-controlled SMS (every x hours, minutes ...)

» event-controlled SMS (temperature outside of a range)

* SMS on demand (reply to an SMS)

* GPS tracker (distance exceeded or waypoint transmission)
* Transmit measured value

Note:
So that you also get messages on your cell phone, please use your own cell phone
number instead of + 49XXXXXXXXXXX.

There is a tax flag for each job. this activates the function. All functions except for
SMS on demand have an additional time block in addition to the tax flag. This means
that, for example, after the temperature has been exceeded, text messages are not
sent continuously until the value is within the range again. The time-out is specified in
seconds, but can be stretched almost at will using the appropriate factors.

In event mode, a sensor is queried at fixed time intervals. A message is only sent if
the sensor value does not meet the specifications.

A type of event mode is also the SMS message about GPS positions. Of course,
many more are possible than the two options shown. When the distance flag is
activated, the waypoint mode is preset. If you comment out the saving of the last
position, the system reacts to any distance beyond the specified distance, at fixed
time intervals, as described above.

The purely time-controlled mode sends the result of a measurement independently of
a sensor value. By default, the measurement results of the BMP280 are accessed
here, representing any other sensors.

With SMS on demand, code words can be sent to the ESP32 via SMS. Unread SMS
corpses are deleted with every restart. Then the system informs about other
messages still in memory.

In the job loop, incoming messages are checked. The job function must decode the
content and, if necessary, initiate appropriate actions or carry out measurements.
Actions that act directly on the SIM808 and, for example, delete all SMS, are also
conceivable. In any case, the mail that triggered the action is also automatically
deleted. This operating mode is preset.

Further messages are waiting in the input buffer of the SIM808 and are processed
one after the other. The waiting times are very important (bold). If they are left out or
set too short, SMS are sent out continuously because the next loop pass finds the
message and processes it again.

if (Trigger & orderFlag) == orderFlag:

L=g.gsmFindSMS("REC UNREAD")

if L:
Nachricht=g.gsmReadSMS(L[0],mode=1)[4]
print("neue SMS gefunden”, L)
orderJob(Nachricht)
print("Job erledigt, mache jetzt Kaffepause")
sleep(5)
g.gsmDeleteSMS(L[0])
sleep(2)

As you can see, the possible uses are very diverse. In addition, nobody but you can
use this control without authorization, unless you put the telephone number of your
SIM card on the notice board, together with all your control codes and the mobile
phone. Because even access from other phone numbers besides your own is
blocked in the program.

So, and so that everything starts autonomously when the ESP32 is switched on, you
simply have to copy the program into the boot.py file and upload it to the ESP32,
restart, that's it. If something goes wrong afterwards and the ESP32 can no longer be
addressed by Thonny or another terminal program, then simply pull the emergency
brake, which aborts the program. It is the RST button on the LCD keypad that you
press until the REPL prompt >>> appears in the terminal. You can now make
changes.

| hope you enjoy texting with your ESP32. In the next episode we will allow our
controller to cheat together with the SIM808. One or more radio modules that can be
equipped with ESP8266 or ESP32 will expand the controller's radius of action. The
transmission protocol will be UDP, which is easily sufficient for our purposes and is
much faster and simpler than TCP. Stay tuned!

Have fun implementing the project!
More download links:

PDF in deutsch
PDF in english

http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf

