Diesen Beitrag gibt es auch als:
PDF in deutsch

This episode is also available as:
PDF in english

Imagine you are on the road with the GPS tracker and are surprised by a storm.
Wouldn't it be better if the device could also record air pressure and temperature in
addition to the position? What for? Well, because the air pressure usually drops
rapidly before a thunderstorm. And when you know this value, you will have time to
seek safe shelter. In order to be able to record air pressure values, | have given my
GPS tracker a BMP280. It also measures the temperature. Both quantities are
recorded with astonishing accuracy. In this article, you can find out what other news
about the device and the program is also available. You are very welcome to the
second part of

GPS with MicroPython on the ESP32

Hardware - only very little growth

In the list below you will find all the parts for the project. OK, most of it was already
used in Part 1. Of course we use these components again. A new addition is a
BMP280 module that | put at the end of the list. It must also be mentioned that the
10kQ resistor at the RST connection of the keypad board has been replaced by the
pull-up resistor of the GP1025. This resistor and another 10kQ now serve as a
voltage divider for measuring the battery voltage on the ESP32. Since there are still

http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf

free analog inputs on the controller, you could also add a 5V monitor. A buzzer that
screams when the voltages fall below a minimum level is also conceivable. But that is
part of the free routine and not a duty. The selection of the ESP32 controller still
gives you a lot of freedom when expanding the project. Let your imagination run wild!

So here is the list of ingredients, the recipe comes right after that.

ESP32 Dev Kit C V4 unverlotet oder ahnlich

LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen
SIM 808 GPRS/GSM Shield mit GPS Antenne fur Arduino

Battery Expansion Shield 18650 V3 inkl. USB Kabel

Li-Akku Typ 18650

I2C IIC Adapter serielle Schnittstelle fir LCD Display 1602 und 2004
Widerstand 10kQ

GY-BMP280 Barometrischer Sensor fur Luftdruckmessung

RIARRRRRP

Unfortunately, I still haven't found an easy way to temporarily turn off the display
backlight to save battery capacity. The switching transistor can only be reached by
bending the display up. The base connection of the transistor would then have to be
separated from the 5V supply voltage and led out to a pin.

"1 _LCD Keypad
R P

T T RN

y
-
4
£y

L

SELECT LEFTYr ¢
A_Ah &

In addition to the 16x2 representation, the display with keypad offers a total of 6
buttons, all of which have a control function in the current project. Five of these
buttons supply the voltage from the nodes of a resistor cascade to an ADC input
(GPIO35) of the ESP32. The levels are decoded by the ESP32 and assigned to
various actions. You will learn more about this later.

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?variant=32437206548576
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/sim808-uno-mikrocontroller-bundle-sonderpreis?variant=6330999832603
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289
https://www.az-delivery.de/products/azdelivery-bmp280-barometrischer-sensor-luftdruck-modul-fur-arduino-und-raspberry-pi?variant=12239814426720

The 6th key, RST, does not follow this pattern. In order to be able to use this button
on the ESP32 for other purposes, | selected the RST connection of the keypad board
to the digital input GPIO25. In the first part, a pull-up resistor of 10kQ was used here.
| removed this resistor and activated the internal pull-up of the input in the ESP32.
How this button is used to expand the functionality of the circuit is explained below in
the program discussion.

The serial-parallel converter module for the LCD has got a little brother in the form of
the BMP280, which is also connected to the 12C bus.

Like the ESP32, both components are operated with 3.3V. This means that the
quiescent level of the bus lines SCL and SDA is also 3.3V and there is no potential
risk.

' A2W0d . . JINV WSO
«1 zzonzy L =2 [

dbiil s8] 60 [:
wlele] [gso]en| Cwik
lor I 20 6IF Iy |20)
sty ssuq
(u { v) l *Z 810
..n_:,_

2l

The wiring of the SIM808 has not changed from the first part. There's not much to
say about that either. Just four lines are required for the connection to the ESP32,
GND, TXD, RXD and the line from the start button of the SIM808 to the GP104 pin of

the ESP32. The next figure shows the connection

of this line to the SIM808 board.

§10Z-01-01
UNIHD NI NNN A8 O3N91530

¥ °2°EN-8n3 BOBWIS

After the hardware, let's take a quick look at the software required. Here is the list.

Used software:
For flashing and programming the ESP:

Thonny oder

uPyCraft
MicropythonFirmware

MicroPython-Module und Programme
GPS-Modul fur SIM808 und GPS6MV2(U-Blocks)
LCD-Standard-Modul

HD44780U-12C-Expansion for LCD-Modul
Keypad-Modul

Button Modul

BMP208-Modul

i2cbus-Modul for standardized access to the bus
Das Hauptprogramm rambler.py

testkeypad.py to test the key decoding

https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/gps/teil2/gps.py
http://www.grzesina.de/az/gps/teil2/lcd.py
http://www.grzesina.de/az/gps/teil2/hd44780u.py
http://www.grzesina.de/az/gps/teil2/keypad.py
http://www.grzesina.de/az/gps/teil2/button.py
http://www.grzesina.de/az/gps/teil2/bmp280.py
http://www.grzesina.de/az/gps/teil2/i2cbus.py
http://www.grzesina.de/az/gps/teil2/rambler.py
http://www.grzesina.de/az/gps/teil2/testkeypad.py

Tricks and information about MicroPython

The interpreter language MicroPython is used in this project. The main difference to
the Arduino IDE is that you have to flash the MicroPython firmware on the ESP32
before the controller understands MicroPython instructions. You can use Thonny,
MPyCraft or esptool.py for this. For Thonny, | described the process in the first part of
the blog on this topic.

After the firmware has been flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. | made ample use of it when
developing the software for this blog. The spectrum ranges from simple tests of the
syntax to trying out and refining functions and entire program parts. For this purpose,
| have created a test program for each of the various modules in which tedious import
and configuration tasks are summarized. The rambler.py program emerged from one
of them.

Such programs are started from the current editor window in the Thonny IDE using
the F5 key, which is faster than clicking the start button. | already described the
installation of Thonny in detail in the first part.

A few other shortcuts help you edit the programs. Python lives from the structuring of
the program text through indentations. It can happen that you have to move entire
passages one (or more) steps in or out. So that each line does not have to be treated
individually, mark the entire block from the first column and press the tab key to
indent, Shift (superscript) and tab key to move out. This is quick and helps to avoid
mistakes. The indentation depth at Thonny is 4. Spaces are used for indenting, no
tabs.

| also found commenting out and uncommenting several lines at the same time very
helpful. In test programs, | usually combine several sequences for different purposes.
So that everything is not always carried out, | simply comment out lines that are
currently not supposed to be processed. Commenting out is done by putting a "#" at
the beginning of the line. This can quickly become annoying for several lines. Then |
mark the block of lines and press Alt + 3 (not F3!). To remove the comment marks, |
press Alt + 4.

To see the attributes of objects, you can use the dir () command. The dir (ADC)
command shows you the attributes and methods of the ADC class, which of course
you have to import beforehand.

>>> from machine import ADC

>>> dir(ADC)

['_class_', ' _name_', 'read', '__bases_ ', '_dict__', 'ATTN_@DB', 'ATTN_11DB', 'ATTN_2_ 5DB’,
'"ATTN_6DB', 'WIDTH_10BIT', 'WIDTH_11BIT', 'WIDTH_12BIT', 'WIDTH_9BIT', 'atten', 'read_ul6', 'widt
h']

>>> |

This can be done more clearly via the Object inspector window. If it is not yet
displayed, you can open it via the View menu.

View Run Tools Help
Assistant
Exception

v Files 4

| Heap

¢ Help

Notes

g ¥ Object inspector
Outline
Program tree

' v Shell

n Stack
Variables

The object inspector has two folders. Attributes is the more interesting one. It
represents the properties and property values of objects. The illustration shows this
for the ADC class. In the terminal window, type ADC and press Enter.

>>> ADC
>>>

Object inspector

" = type

@

0x3f4 Data |Attributes

1729

8
Name Value
ATTN_ODB 0
ATTN_11DB 3
ATTN_2_5DB 1
ATTN_6DB 2
WIDTH_108BIT 1
WIDTH_T1BIT 2
WIDTH_12BIT 3
WIDTH_9BIT 0
atten <function>
read <function>
read_u16 <function=>
width <bound_m

Before we look at the program modules, the BMP280 must first be connected and the
voltage measurement of the 3.3V line must be prepared. Please use the following
circuit diagram as a guide. You get a more legible copy with the Download of the PDF-
File .

4 N
BMP280

SDA

SCL

GPS-Tracker mit ESP32
Autor: Jurgen Grzesina

M A

http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf

A few remarks on the circuit should clarify its function. The LCD keypad is supplied
with 5V, | mentioned that above. The ESP32 works with a maximum of 3.3V for the
supply voltage and for the GPIO pins. Therefore the 5V level at the inputs and outputs
of the LCD and the keypad must be reduced to ESP32-compatible values. This is done
by the voltage divider from the two 10kQ resistors.

- D
5V :r
NI w
% = é 5 5 1 GPIO35
10k
N J

The figure shows a possible circuit of the resistor cascade with the SELECT, LEFT,
UP, DOWN and RIGHT buttons. The first resistor on the hot end is at 5V. The
buttons switch the respective level through to connection AO of the keypad, which
thus carries approx. 5V when idling. We halve the voltage applied here using a
voltage divider made up of two 10kQ resistors to a tolerable 2.5V. We connect the
center tap to the analog input GP1O35 of the ESP32. We are making further
adjustments in the KEYPAD class.

So, the hardware is ready, let's test the buttons on the LCD keypad. Let's start first on
foot with REPL, the MicroPython command line, in the terminal area. We import the
ADC class and the pin class from the integrated module machine, create an ADC
object on GPIO35 and set its properties to 12-bit width (0... 4095) and maximum
measuring range, ADC.ATTEN_11DB, with which the ESP32 has a maximum Can
detect a voltage of approx. 3.3V.

>>> from machine import ADC,Pin
>>>a=ADC(Pin(35))
>>>a.atten(ADC.ATTN_11DB)
>>>a.width(ADC.WIDTH_12BIT)
>>>a.read()

The result of the last command should return a value around 2500. Repeat the read
command, but first press one of the keys. The following values came to light for me:

SELECT: | 1750
LEFT: 1150
DOWN: | 670
UP: 200
RIGHT: |0

For an easier query of the keys in the main program, | built a module around these
values. It contains the KEYPAD class, which in turn has two methods, the
constructor, that is the __init __ () method and the key () method. __init __ ()
processes basic things for every class, creates instance variables (aka attributes),

defines interfaces and thus creates the environment for an object from the blueprint
of this class when called. An ADC object is defined here and a first measurement is
initiated. Calling the instance method key () from the class definition is not yet
possible at this point because the range list keyRange has not yet been defined.
Therefore, the first measurement to crank the ADC cannot be made by calling the
key method.

Then we determine the calibration factor k and build up the list with the areas that on
the one hand follow the guide values of the keys and on the other hand leave a
margin open, taking the calibration factor into account. The almost limitless
combination of objects in MicroPython enables such clear programming. The
formatted text output including numerical variables closes the constructor.

The key () method provides an integer from 0 up to and including 4 as a return value,
which corresponds to one of the keys. To make it easier to deal with, I've defined the
Right, Up, Down, Left, and Select class attributes as constants that can be used in
place of the numbers.

from machine import ADC,Pin

class KEYPAD:
Right=const (0)
Up=const (1)
Down=const (2)
Left=const (3)
Select=const (4)

def init (self, pin=35):
self.a=ADC (Pin (pin))
self.a.atten (ADC.ATTN 11DB)
Self.a.width(ADC.WIDTH_IZBIT)
self.a.read() # erst mal Messung initialisieren
keyValues: 0,200,680,1100,1750,2500
adcMax= (self.a.read () +self.a.read()+self.a.read())//3
k=adcMax/2500

self.keyRange=[range (0, int (75*k)), # right
range (int (100*k),int (300*k)), # up
range (int (440*k),int (850*k)), # down
range (int (900*k), int (1300*k)), # left
range (int (1450*k), int (2000*k)), # select

]
print ("KEYPAD initialized, Leerlauf: {}, k=
{1".format (adcMax, k))

def key(self):
s=0
for i in range (5):
s+=self.a.read()
m=s//5
for i in range (5) :
if m in self.keyRange[i]: return i
return 5

This is how the constructor works

The key values fluctuate on the one hand due to measurement errors of the ADC
(aka analog-digital converter) and on the other hand due to differences in the supply
voltage. The constructor of future keypad objects therefore calibrates them when they
are called. With the factor k, the limit values of the key recognition are adapted to the
idle value without pressing a key. After my first measurements, | set the limit values
with the help of a small test program (testkeypad.py) so that the areas do not overlap.
| have grouped these range objects (in MicroPython everything is one object) in the
keyRange list object. The individual fields are addressed by a list pointer, called an
index.

The class as the blueprint of an object (aka instance) defines the ingredients for this
object (aka instance). Every object that is supposed to belong to the instance itself is
given the prefix self. In this context, Self represents the name of the object that is
later derived from the class. For functions that are referred to as methods in this
consensus in object-oriented programming, this self is the first parameter in the
parameter list. It can also be the only parameter, but it cannot be omitted. Instance
methods, like all functions, are declared using the def keyword. If an instance method
is called within the class definition, the name of the method must also be preceded by
a self. The prefix self is always separated from the subsequent name by a period.
The constructor in the form of the __init __ () method creates the instance variables,
their initial values and other objects when called. From the outside, the constructor
bears the name of the class. You can see these relationships well from the KEYPAD
class definition and the test program.

How does the key () method work? In order to reduce the spread of the ADC, | have
the mean of 5 individual measurements taken. This is done by the first for loop. In the
following for loop, | check whether the mean value is in the range that is addressed
by the index. If so, the index is returned as a function value, it encodes the selection.
If the ADC value is not in the addressed area, the next area from keyRange is
checked. If none of the ranges matched, then apparently no key was pressed and in
this case the value 5 was returned.

In addition to other sources, areas are also required as an index pool for for loops, as
in the case of the key () method. Therefore you have to know that all integer values
from the first inclusive to the second exclusive always count for a range. Of course,
there are various other options for defining areas, more on that another time. To
introduce a few examples:

It is
range (0.5) =range (5) =0,1,2,3,4
range (23.24) = 23

And that is also possible
>>> List = [0,1,2,3,4,5,6]

>>> for i in range (4):
print (list [i])

WNEFO

>>> for i in range (3,6):
print (list [i])

3

4

5

>>> for i in range (1,7,2):
print (list [i])

1
3
5
>

Now let's test the KEYPAD class. We use the test program testkeypad.py mentioned
above for this. Here you can see the very short listing.

Bring keypad.py and testkeypad.py into Thonny's working directory and copy
keypad.py to the ESP32.

Files =

This computer = "~

F: % P_programmieren b, az- I:Jlog ‘-L
gps_Teil2 % _workspace

@& button.py

& gps.py

& gpsémv2.py
& gy271.py

& hd44780u.py
& i2cbus.py

@) keypad.py
& lcd.py

& lcddemo.py
& oled.py

& parken.py

| positions.pas
& rambler.py v

Files i2cbus.py

This computer = ¥

F: \ P_programmieren \ az-bleg \
gps_Teil2 \ _workspace

& button.py
& gps.py 5
& gpsémv2.py 6
& gy271.py £
& hd44780u.py

& i2cbus.py

@ keypad.pv

& led.py Open in system default app
& Icddemc Configure .py files...

& oled.py

&J parken.p Moveto Recycle Bin
] position New directory...

& rambler Properties

N =

A

b I N

Open in Thonny

|

Open testkeypad.py in an editor window and start the program with the F5 key
If you don't hold down a key, a column of five will now appear in the terminal

5

5
5
5...

Press the keys one after the other and check the output. Cancel the program with Citrl
+ C when the cursor is in the terminal window.

k is the name of the KEYPAD instance in the test program, it replaces the keyword
self. The keyRange list is a property (aka attribute) of the instance k. You can
recognize this in the class definition by the prefix self. In the case of object k, the
name k replaces this self. The keyRange list can therefore be called up (aka
referenced) as follows.

>>> k.keyRange

[range (0, 73), range (97, 292), range (428, 827), range (876, 1266), range (1412,
1948)]

>>>

If the number assignments to the keys are incorrect, RIGHT delivers 0, UP a 1,
DOWN a 2 and LEFT and SELECT 3 and 4, then this is most likely due to incorrectly
set limit values in the constructor. You then have to redefine the key values and set
the limit values sensibly. After the KEYPAD constructor has generated the ADC
object a, you can use this to query the ADC values of the keys. You are instructing
the ADC to measure the voltage at input GPIO35 and output it as an integer. With the
setting a.width (ADC.WIDTH_12BIT) you get numerical values between 0 and 4095
inclusive.

>>> k.a.read ()
2438

Let's get to the display. In addition to the display, the keypad has 6 buttons. That was
the reason for choosing this module. On the other hand, | also like to use OLED
displays; they are smaller and also allow simple graphical representations. So that a
program can cope with both LCDs and OLEDs without changes, | have developed a
module for both cases that uses the same user interface (aka API). This is followed
by further modules that take care of hardware-specific commands on the one hand
and communication with the hardware on the other. Both are usually of no interest to
the user and are done in the background by libraries or modules, which are often
referred to as device drivers.

As a rule, you can usually get by without these device-specific commands. With the
modules at hand, however, it is always the case that the entire command structure
across all classes is ultimately available to the user. This is made possible by
inheriting classes. This means that all essential commands, represented by the
methods of the classes, are in the same namespace. The LCD class inherits from
PCF8574U and this in turn inherits from HD44780U. Ultimately, all methods from
each of the three classes are available if you only import the class LCD in the
following way. The constructors of the father (PCF8574U) and grandfather
(HD44780U) of the class LCD report in sequence when the object d of this class is
instantiated.

>>> from lcd import LCD

>>> from machine import 12C, pin
>>>j2¢ = 12C (-1, pin (21), pin (22))
>>>d = LCD (i2c, 0x27,16,2)

this is the constructor of the HD44780U class
Size: 16x2

Constructor of PCF8574U class

this is the constructor of the LCD class
Size: 16x2

>>> d

<LCD object at 3ffe9540>

>>> you (d)

The last command gives you an extensive list of methods and attributes, the names
of which you can find in one of the three class definitions. You can get a nicer list in
the Object inspector.

The same commands are superficially available for the LCD class as for the OLED
class. Methods that do not make sense in one of the classes are secured in such a
way that nothing happens, so there is no program termination or error message. For
the present project, this means that you could always direct the display to an OLED
display if you could find another solution for the button control. The method calls to
the display do not have to be changed, only the constructor call needs to be adapted
and of course you have to import the OLED classes

Next, you can study and test the lcd.py module. | use an adapter with the PCF8574
chip for the wiring, which converts 12C signals from the ESP32 to the parallel output
to the LCD. You control the 2 + 4 (+2) control lines of the LCD module via 2 bus lines.
And that including level conversion from 3.3V 12C of the ESP32 to 5V LCD input on
the keypad. The connection distribution is as follows (see also schematic).

PCF8574Bit |0 |1 2 |3 |4 |5 |6 |7
LCD-Bit RS|RW|E |BL|D4|D5|D6|D7
Keypad Shield | D8 D9 D4 | D5 | D5 | D7

According to the use of the upper data nibble on the chip, the class PCF8574U is
imported. U stands for UPPER.

wirrwn

Datei: lcd.py

Author: Juergen Grzesina

##4# Verwendung:

Die Klasse LCD stellt die gleiche API wie OLED bereit, sodass
beide

Displays ohne Aenderung am Programm austauschbar sind.
Folgende Methoden stehen in der Klasse LCD bereit:

LCD(i2c, Spalten, Zeilen)

writeAt (string, xpos, ypos, show=True)

clearFT (xv,yv[,xb=spalte] [, yb=zeile, show=True)

clearAll ()

(pillar (xpos,breite,hoehe, show=True))

http://www.grzesina.de/az/gps/teil1/gps_schematic.jpg

The important methods from this module are the constructor and clearAll () as well as
writeAt ().

In the constructor __init __ (), which is called by LCD () in the program, we pass an
I2C object that must have already been defined in the main program. In the current
project, the bus is also used for a BMP280 module for measuring air pressure and
temperature. | will come to this module later.

i2c = 12C (-1, pin (21), pin (22))

Then the hardware address of the PCF8574 is transferred if it differs from the default
address 0x27. This is followed by the number of columns and rows. It looks like this
in the main program.

d = LCD (i2c, 0x27, cols = 16, lines = 2)

The writeAt () method takes the string to be output as the first parameter, followed by
the column and row position in the display. Please note that both counts start from
zero.

The method

clearAll ()

clears the entire display and places the cursor at position 0,0 (= top left corner =
home position).

Well, the most important thing for a GPS application is: How do | address the GPS
services of the SIM808?

Three stages lead to success. The first stage is purely manual, you have to slide the
small slide switch right next to the pipe socket for the power supply in the direction of
the SIM808 chip. A red LED lights up next to the GSM antenna socket.

A little further to the left is the start button. If you press this for approx. 1 second, two
more LEDs light up between the other two antenna sockets, the right one flashes.
The active GPS antenna should already be connected to the left screw socket. It is
best to place them near a window.

So that you don't have to open the housing of your GPS receiver every time to start
the SIM808, | recommend that you do the same and solder a cable to the hot
connection of the start button. Viewed from above, it is the right one if the pipe socket
also points to the right. You can now start the SIM808 by defining a GPIO pin of the
ESP32 as an output and switching from high to low and back to high for one second.
| intended pin 4 for this.

When the constructor for the GPS object is called, the number of the pin is
transferred together with the display object as a parameter.

>>> from gps import GPS, SIM808
>>> g = SIM808 (4, d)

If no display object (d) is passed, there is also no output on the LCD or OLED. There
is no error message, but the key control works. Almost all important results are also
output in the terminal window.

The GPS class does most of the work. As mentioned, the constructor expects a
display object that must be defined in the calling program or must already be known.
A serial channel to the SIM808 is opened at 9600 baud, 8,0,1, then the instance
variables are set up to record the GPS data.

The waitForLine () method does what its name says, it waits for a NMEA sentence
from the SIM808. The type of NMEA sentence that is expected is given as a
parameter. If the record is complete and free of errors, it is returned to the calling
program. In the current version of the program, $ GPRMC and $ GPGGA records can
be received. They contain all relevant data such as validity, date, time, geographical
latitude (latitude, from the equator to the poles in degrees) and longitude (longitude
from the zero meridian +/- 180 °) as well as height above sea level in meters.

The decodeLine () method takes the received record and tries to decode it. This
method contains a local function that converts the angle specifications into the
formats degrees, minutes, seconds and fractions, degrees and fractions, or degrees,
minutes and fractions, according to the specification of the mode attribute.

The method printData () outputs a data record in the terminal window. showData ()
returns the result to the display. Because only a two-line display is used, the display
must be divided into several sections. The keys on the keypad take control.

You are probably most interested in the methods of class SIM808, because this is
how the GPS data is only processed in the ESP32.

Basically, the data exchange between ESP32 and SIM808 takes place via a serial
data connection with 9600 baud, 8,0,1. This means that 9600 bits are transmitted per
second, whereby a data frame (aka frame) consists of 8 data bits, O parity bits and
one stop bit. The start bit is mandatory and is not mentioned in this list. A data frame
thus comprises 10 bits, the LSB (aka Least Significant Bit) is transmitted first after the
start bit (0). The stop bit (1) completes the transmission. At the TTL level, a 1
corresponds to the 3.3V level, the 0 to the GND level.

Because the UARTO interface is reserved for REPL, a second interface must be
available for communication with the SIM808. The ESP32 provides such a UART?2.
The connections for RXD (reception) and TXD (transmission) can even be freely
selected. For full duplex operation (send and receive simultaneously) the RXD and
TXD connections from the ESP32 to the SIM808 must be crossed. You can
understand this on the circuit diagram. The default values on the ESP32 are RXD =
16 and TXD = 17. The connection is organized by the gps.GPS class.

This begins when the SIM808 is switched on. If you followed my recommendation
and soldered a cable to the power button, you can now switch on the SIM808 with
the following command, provided that this cable is connected to pin 4 of the ESP32.

>>> g.SIMOn ()

Commands to the SIM808 are transmitted in AT format. There is a huge variety of
commands that can be looked up in a PDF file. But don't worry, a few commands are
basically enough for our project. They are combined in the init808 () and deinit808 ()
methods.

def init808(self):
self.u.write("AT+CGNSPWR=1\r\n")
self.u.write("AT+CGNSTST=1\r\n")

def deinit808(self):
self.u.write("AT+CGNSPWR=0\r\n")
self.u.write("AT+CGNSTST=0\r\n")

AT + CGNSPWR = 1 switches on the power supply to the GPS module and AT +
CGNSTST =1 activates the transmission of the NMEA sentences to the ESP32 via
the serial interface UART2. The controller receives the information from the SIM808
and provides it in the manner described above via the terminal and LCD.

In addition to the hardware control of the SIM808, the gps.py module also contains
the necessary commands for the smaller GPS system GPS6MV2 with the Neo 6M
chip from UBLOX. This module is not controlled via AT commands but via its own
syntax.

The listing now follows to study the gps module in more detail. It contains a whole
range of functions that are only used in the third part of the blog, which deals with

sending and receiving SMS messages. As for the first part, you do not need a SIM
card for the article you are currently reading; you will only need one in the third part of
the blog series.

The SIM808 class takes care of the hardware control and the data transfer to the
ESP32. The GPS class contains methods for decoding the NMEA sentences from
the SIM808, for displaying them on the display and for calculating the course.

The application program has increased in scope compared to the first part. This is
because the number of functions has increased from 4 to 11. If you pack it in the
boot.py file and upload it to the ESP32, it starts autonomously without the need for
the USB connection to the PC. So you are independent in the field. The display takes
place via the LCD and control via the keypad buttons. Here is the listing of the
extended main GPS program rambler.py.

d.writeAt ("{:.2f} V".format(s),0,1)
sleep (3)
d.clear ()
pass
sleep(0.1)

The main program is usually just a pretty package. The real work is done by the
methods in the classes that are built around the hardware. You will also recognize
layers in the programs in this article, the structure of which is repeated and follows
the following scheme.

Hardware - communication driver - basic functions - API - main program

It is the same with the last module that deals with the BMP280. It includes all
functions that are necessary to address the register structure of the BME280. This
allows the operating mode to be set and measurement results to be queried.

In order for the transport to and from the ESP32 to work, an 12C bus driver is
switched on, which translates the internal MicroPython bus commands of the ESP32
into standardized commands and, if possible, adjusts the numerical and text
variables. This class I2CBus works in the background and is imported and initialized
by the class BME280. By inheritance, the BME280 class automatically also has the
I2CBus namespace. In principle, the user of the BME280 class does not need to
know anything about this. It is sufficient to know the API of the BME280 class. And
here is their listing.

File: bmp280.py

Author: Jirgen Grzesina

Rev.: 0.1 AVR-Assembler

Rev.: 2.0 MicroPython Portierung
Stand: 12.04.2021

Methoden von BME280

BME280 (1i2c, hwadr=0x76)
getCalibrationData ()
printCalibrationData ()
readDataRaw ()

readControlReqg ()

readConfigReqg ()

readStatusReg ()

isBussy ()

isImaging ()

writeContrlReqg ()

writeConfigReqg ()

setConfig (StandBy=None, Filter=None)
setControl (OST=None, OSP=None, Mode=None)
calcTfine ()

calcTemperature ()

calcPressureH ()
calcPressureNN (self, h=465, t=20)
softReset ()

mwwwn

t=(temp if temp else self.calcTemperature())

T=t+273

self.pressNN=(self.pres*pow ((T/ (T+0.0065*h)), -
5.255)) /100

return self.pressNN

def softReset (self) :
self.writeByteToReqg (ResetR, 0xB6, self.hwadr)

A few more comments on the operation of the main program.

* It may take a few minutes for the SIM808 to provide usable results.

» The program starts with the display of degrees, minutes and fractions.

« After pressing the button, please wait until the display is cleared, then release the
button. The next display is in the new mode.

Keys:

RST at the start input of waypoints as target specification

right degrees and decimals

Up degrees, minutes, seconds and fractions

Down degrees, minutes and fractions

Left date and time

Select altitude and time

RST + Right Save current position as a waypoint

RST + Up Retrieve waypoints and course and distance display
RST + Down Course and distance from the last saved waypoint
RST + Left air pressure and temperature

RST + Select voltage on the 3.3V line

After the RST functions, the display returns to the previous normal display.

Now you only need to stow all the equipment in a box and then the mail goes off to
the site. And who knows, maybe after the test you will pack everything in an elegant
housing.

As already indicated, the next article deals with the use of the SIM808 to transmit
geodata and other information via SMS. This creates a tracking module or a
stationary measuring module that can transmit data via the cellular network via time
control or a call trigger. So it is finally easy to determine where the son's man is
curving around with Papa's posh carriage or where the runaway dog can be caught
or ...

Have fun implementing the project!
More download links:

PDF in deutsch
PDF in english

http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf

