

Diesen Beitrag gibt es auch als:
PDF in deutsch
This episode is also available as:
PDF in english

Imagine you are on the road with the GPS tracker and are surprised by a storm.
Wouldn't it be better if the device could also record air pressure and temperature in
addition to the position? What for? Well, because the air pressure usually drops
rapidly before a thunderstorm. And when you know this value, you will have time to
seek safe shelter. In order to be able to record air pressure values, I have given my
GPS tracker a BMP280. It also measures the temperature. Both quantities are
recorded with astonishing accuracy. In this article, you can find out what other news
about the device and the program is also available. You are very welcome to the
second part of

GPS with MicroPython on the ESP32

Hardware - only very little growth
In the list below you will find all the parts for the project. OK, most of it was already
used in Part 1. Of course we use these components again. A new addition is a
BMP280 module that I put at the end of the list. It must also be mentioned that the
10kɋ resistor at the RST connection of the keypad board has been replaced by the
pull-up resistor of the GPIO25. This resistor and another 10kɋ now serve as a
voltage divider for measuring the battery voltage on the ESP32. Since there are still

http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_ger.pdf
http://www.grzesina.de/az/gps/teil2/gps_mcp_teil2_eng.pdf

free analog inputs on the controller, you could also add a 5V monitor. A buzzer that
screams when the voltages fall below a minimum level is also conceivable. But that is
part of the free routine and not a duty. The selection of the ESP32 controller still
gives you a lot of freedom when expanding the project. Let your imagination run wild!

So here is the list of ingredients, the recipe comes right after that.

1 ESP32 Dev Kit C V4 unverlötet oder ähnlich

1 LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen

1 SIM 808 GPRS/GSM Shield mit GPS Antenne für Arduino

1 Battery Expansion Shield 18650 V3 inkl. USB Kabel

1 Li-Akku Typ 18650

1 I2C IIC Adapter serielle Schnittstelle für LCD Display 1602 und 2004

4 Widerstand 10kÝ

1 GY-BMP280 Barometrischer Sensor für Luftdruckmessung

Unfortunately, I still haven't found an easy way to temporarily turn off the display
backlight to save battery capacity. The switching transistor can only be reached by
bending the display up. The base connection of the transistor would then have to be
separated from the 5V supply voltage and led out to a pin.

In addition to the 16x2 representation, the display with keypad offers a total of 6
buttons, all of which have a control function in the current project. Five of these
buttons supply the voltage from the nodes of a resistor cascade to an ADC input
(GPIO35) of the ESP32. The levels are decoded by the ESP32 and assigned to
various actions. You will learn more about this later.

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?variant=32437206548576
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/sim808-uno-mikrocontroller-bundle-sonderpreis?variant=6330999832603
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289
https://www.az-delivery.de/products/azdelivery-bmp280-barometrischer-sensor-luftdruck-modul-fur-arduino-und-raspberry-pi?variant=12239814426720

The 6th key, RST, does not follow this pattern. In order to be able to use this button
on the ESP32 for other purposes, I selected the RST connection of the keypad board
to the digital input GPIO25. In the first part, a pull-up resistor of 10kɋ was used here.
I removed this resistor and activated the internal pull-up of the input in the ESP32.
How this button is used to expand the functionality of the circuit is explained below in
the program discussion.

The serial-parallel converter module for the LCD has got a little brother in the form of
the BMP280, which is also connected to the I2C bus.

Like the ESP32, both components are operated with 3.3V. This means that the
quiescent level of the bus lines SCL and SDA is also 3.3V and there is no potential
risk.

The wiring of the SIM808 has not changed from the first part. There's not much to
say about that either. Just four lines are required for the connection to the ESP32,
GND, TXD, RXD and the line from the start button of the SIM808 to the GPIO4 pin of
the ESP32. The next figure shows the connection of this line to the SIM808 board.

After the hardware, let's take a quick look at the software required. Here is the list.

Used software:
For flashing and programming the ESP:
Thonny oder
µPyCraft
MicropythonFirmware

MicroPython-Module und Programme
GPS-Modul für SIM808 und GPS6MV2(U-Blocks)
LCD-Standard-Modul
HD44780U-I2C-Expansion for LCD-Modul
Keypad-Modul
Button Modul
BMP208-Modul
i2cbus-Modul for standardized access to the bus
Das Hauptprogramm rambler.py
testkeypad.py to test the key decoding

https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/gps/teil2/gps.py
http://www.grzesina.de/az/gps/teil2/lcd.py
http://www.grzesina.de/az/gps/teil2/hd44780u.py
http://www.grzesina.de/az/gps/teil2/keypad.py
http://www.grzesina.de/az/gps/teil2/button.py
http://www.grzesina.de/az/gps/teil2/bmp280.py
http://www.grzesina.de/az/gps/teil2/i2cbus.py
http://www.grzesina.de/az/gps/teil2/rambler.py
http://www.grzesina.de/az/gps/teil2/testkeypad.py

Tricks and information about MicroPython
The interpreter language MicroPython is used in this project. The main difference to
the Arduino IDE is that you have to flash the MicroPython firmware on the ESP32
before the controller understands MicroPython instructions. You can use Thonny,
µPyCraft or esptool.py for this. For Thonny, I described the process in the first part of
the blog on this topic.

After the firmware has been flashed, you can have a casual conversation with your
controller, test individual commands and immediately see the answer without first
having to compile and transfer an entire program. I made ample use of it when
developing the software for this blog. The spectrum ranges from simple tests of the
syntax to trying out and refining functions and entire program parts. For this purpose,
I have created a test program for each of the various modules in which tedious import
and configuration tasks are summarized. The rambler.py program emerged from one
of them.

Such programs are started from the current editor window in the Thonny IDE using
the F5 key, which is faster than clicking the start button. I already described the
installation of Thonny in detail in the first part.

A few other shortcuts help you edit the programs. Python lives from the structuring of
the program text through indentations. It can happen that you have to move entire
passages one (or more) steps in or out. So that each line does not have to be treated
individually, mark the entire block from the first column and press the tab key to
indent, Shift (superscript) and tab key to move out. This is quick and helps to avoid
mistakes. The indentation depth at Thonny is 4. Spaces are used for indenting, no
tabs.

I also found commenting out and uncommenting several lines at the same time very
helpful. In test programs, I usually combine several sequences for different purposes.
So that everything is not always carried out, I simply comment out lines that are
currently not supposed to be processed. Commenting out is done by putting a "#" at
the beginning of the line. This can quickly become annoying for several lines. Then I
mark the block of lines and press Alt + 3 (not F3!). To remove the comment marks, I
press Alt + 4.

To see the attributes of objects, you can use the dir () command. The dir (ADC)
command shows you the attributes and methods of the ADC class, which of course
you have to import beforehand.

This can be done more clearly via the Object inspector window. If it is not yet
displayed, you can open it via the View menu.

The object inspector has two folders. Attributes is the more interesting one. It
represents the properties and property values of objects. The illustration shows this
for the ADC class. In the terminal window, type ADC and press Enter.

>>> ADC
>>>

Before we look at the program modules, the BMP280 must first be connected and the
voltage measurement of the 3.3V line must be prepared. Please use the following
circuit diagram as a guide. You get a more legible copy with the Download of the PDF-
File .

http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf
http://www.grzesina.de/az/gps/teil2/gps_schematic_part2.pdf

A few remarks on the circuit should clarify its function. The LCD keypad is supplied
with 5V, I mentioned that above. The ESP32 works with a maximum of 3.3V for the
supply voltage and for the GPIO pins. Therefore the 5V level at the inputs and outputs
of the LCD and the keypad must be reduced to ESP32-compatible values. This is done
by the voltage divider from the two 10kɋ resistors.

The figure shows a possible circuit of the resistor cascade with the SELECT, LEFT,
UP, DOWN and RIGHT buttons. The first resistor on the hot end is at 5V. The
buttons switch the respective level through to connection A0 of the keypad, which
thus carries approx. 5V when idling. We halve the voltage applied here using a
voltage divider made up of two 10kɋ resistors to a tolerable 2.5V. We connect the
center tap to the analog input GPIO35 of the ESP32. We are making further
adjustments in the KEYPAD class.

So, the hardware is ready, let's test the buttons on the LCD keypad. Let's start first on
foot with REPL, the MicroPython command line, in the terminal area. We import the
ADC class and the pin class from the integrated module machine, create an ADC
object on GPIO35 and set its properties to 12-bit width (0é 4095) and maximum
measuring range, ADC.ATTEN_11DB, with which the ESP32 has a maximum Can
detect a voltage of approx. 3.3V.

>>> from machine import ADC,Pin
>>>a=ADC(Pin(35))
>>>a.atten(ADC.ATTN_11DB)
>>>a.width(ADC.WIDTH_12BIT)
>>>a.read()

The result of the last command should return a value around 2500. Repeat the read
command, but first press one of the keys. The following values came to light for me:

SELECT: 1750

LEFT: 1150

DOWN: 670

UP: 200

RIGHT: 0

For an easier query of the keys in the main program, I built a module around these
values. It contains the KEYPAD class, which in turn has two methods, the
constructor, that is the __init __ () method and the key () method. __init __ ()
processes basic things for every class, creates instance variables (aka attributes),

defines interfaces and thus creates the environment for an object from the blueprint
of this class when called. An ADC object is defined here and a first measurement is
initiated. Calling the instance method key () from the class definition is not yet
possible at this point because the range list keyRange has not yet been defined.
Therefore, the first measurement to crank the ADC cannot be made by calling the
key method.

Then we determine the calibration factor k and build up the list with the areas that on
the one hand follow the guide values of the keys and on the other hand leave a
margin open, taking the calibration factor into account. The almost limitless
combination of objects in MicroPython enables such clear programming. The
formatted text output including numerical variables closes the constructor.

The key () method provides an integer from 0 up to and including 4 as a return value,
which corresponds to one of the keys. To make it easier to deal with, I've defined the
Right, Up, Down, Left, and Select class attributes as constants that can be used in
place of the numbers.

from machine import ADC,Pin

class KEYPAD:

 Right= const(0)

 Up=const(1)

 Down=const(2)

 Left= const(3)

 Select= const(4)

 def __init__(self, pin=35):

 self.a=ADC(Pin(pin))

 self.a.atten(ADC.ATTN_11DB)

 self.a.width(ADC.WIDTH_12BIT)

 self. a.read () # erst mal Messung initialisieren

 # keyValues: 0,200,680,1100,1750,2500

 adcMax=(se lf.a.read()+self.a.read()+self.a.read())//3

 k=adcMax/2500

 self.keyRange=[range(0,int(75*k)), # right

 range(int(100*k),int(300*k)), # up

 range(int(440*k),int(850*k)), # down

 range(int(900*k),int(1300*k)), # left

 range(int(1450*k),int(2000*k)),# select

]

 print("KEYPAD initialized, Leerlauf: {}, k=

{}".format(adcMax,k))

 def key(self):

 s=0

 for i in range(5):

 s+=self.a.read()

 m=s//5

 for i in range(5):

 if m in self.keyRange[i]: return i

 return 5

This is how the constructor works

The key values fluctuate on the one hand due to measurement errors of the ADC
(aka analog-digital converter) and on the other hand due to differences in the supply
voltage. The constructor of future keypad objects therefore calibrates them when they
are called. With the factor k, the limit values of the key recognition are adapted to the
idle value without pressing a key. After my first measurements, I set the limit values
with the help of a small test program (testkeypad.py) so that the areas do not overlap.
I have grouped these range objects (in MicroPython everything is one object) in the
keyRange list object. The individual fields are addressed by a list pointer, called an
index.

The class as the blueprint of an object (aka instance) defines the ingredients for this
object (aka instance). Every object that is supposed to belong to the instance itself is
given the prefix self. In this context, Self represents the name of the object that is
later derived from the class. For functions that are referred to as methods in this
consensus in object-oriented programming, this self is the first parameter in the
parameter list. It can also be the only parameter, but it cannot be omitted. Instance
methods, like all functions, are declared using the def keyword. If an instance method
is called within the class definition, the name of the method must also be preceded by
a self. The prefix self is always separated from the subsequent name by a period.
The constructor in the form of the __init __ () method creates the instance variables,
their initial values and other objects when called. From the outside, the constructor
bears the name of the class. You can see these relationships well from the KEYPAD
class definition and the test program.

How does the key () method work? In order to reduce the spread of the ADC, I have
the mean of 5 individual measurements taken. This is done by the first for loop. In the
following for loop, I check whether the mean value is in the range that is addressed
by the index. If so, the index is returned as a function value, it encodes the selection.
If the ADC value is not in the addressed area, the next area from keyRange is
checked. If none of the ranges matched, then apparently no key was pressed and in
this case the value 5 was returned.

In addition to other sources, areas are also required as an index pool for for loops, as
in the case of the key () method. Therefore you have to know that all integer values
from the first inclusive to the second exclusive always count for a range. Of course,
there are various other options for defining areas, more on that another time. To
introduce a few examples:

It is
range (0.5) = range (5) = 0,1,2,3,4
range (23.24) = 23

And that is also possible

>>> List = [0,1,2,3,4,5,6]
>>> for i in range (4):
 print (list [i])

0
1
2
3
>>> for i in range (3,6):
 print (list [i])

3
4
5
>>> for i in range (1,7,2):
 print (list [i])

1
3
5
>>>

Now let's test the KEYPAD class. We use the test program testkeypad.py mentioned
above for this. Here you can see the very short listing.

#testkeypad

from keypad import KEYPAD

from time import sleep

k=KEYPAD(35)

while 1:

 print(k.a.read(),k.key())

 sleep(1)

Bring keypad.py and testkeypad.py into Thonny's working directory and copy
keypad.py to the ESP32.

Open testkeypad.py in an editor window and start the program with the F5 key

If you don't hold down a key, a column of five will now appear in the terminal

5

