
 
 
Diesen Beitrag gibt es auch als: 
PDF in deutsch 
This episode is also available as: 
PDF in english 
 
 
Bernd Albrecht's contributions on the topic of "Easter egg hunt with GPS" inspired me 
to check whether the project could also be done with a micropython. Well, of course it 
is when you have the tools you need. And I'll tell you something else right at the 
beginning: the program is very short and clear - thanks to two classes that I built 
specifically for the SIM808 and the keypad. I would like to spare you your own search 
for sources, because in this article I will tell you which tools you need, where you can 
get them and how they are used. So welcome to the first part of 
 

GPS with MicroPython on the ESP32 
 

A couple of hardware considerations 
If you have used the GPS to help the Easter Bunny hide the eggs, you already have 
most of the hardware you need. Which changes I made to the list and why, you will 
find out immediately afterwards. 
  

http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_ger.pdf
file:///C:/Users/Bernd/Documents/AZ-Delivery/Blog/JürgenGrzesina/GPS_GSM/Teil1/gps_mcp_teil1_eng.pdf


 

1  ESP32 Dev Kit C V4 unverlötet or similar 

1  LCD1602 Display Keypad Shield HD44780 1602 Modul mit 2x16 Zeichen 

1  SIM 808 GPRS/GSM Shield mit GPS Antenne für Arduino  

1  Battery Expansion Shield 18650 V3 inkl. USB Kabel 

1 Li-Akku Typ 18650 

1 I2C IIC Adapter serielle Schnittstelle für LCD Display 1602 und 2004 

3 Widerstand 10kΩ 

 
The choice of the controller fell clearly on the ESP32, on the one hand because of 
the possibility of establishing MicroPython as firmware there, which is not possible on 
the Arduino. An ESP8266 is also ruled out because there is no second serial 
hardware interface available. And Raspi would clearly be oversized. The software 
solutions, like on the Arduino, did not work reliably. In addition, the in-out lines on the 
ESP8266 are not sufficient for my entire project. 
 

 
 
In addition to the 16x2 representation, the display with keypad offers a total of 6 keys, 
five of which have a control function in the current project. These buttons supply the 
voltage from the nodes of a resistor cascade to an ADC input (GPIO35). The levels 
are decoded by the ESP32 and assigned to various actions. You will learn more 
about this later. 
 
The 6th key, RST, does not follow this pattern. If the keypad is used as a shield on 
the Arduino, the button sets the RST input of the AT-Mega328 (with 10kΩ pull-up 
resistor) to GND potential and thus triggers a cold start. In order to be able to use this 
button on the ESP32 for other purposes, we have to give it a pull-up resistor against 
3.3V (not 5V!). Then you can connect any input of the ESP32 to the RST output of 

https://www.az-delivery.de/products/esp32-dev-kit-c-v4-unverlotet?variant=32437206548576
https://www.az-delivery.de/products/azdelivery-hd44780-1602-lcd-module-display-2x16-zeichen-fur-arduino-lcd1602-keypad?variant=12239871836256
https://www.az-delivery.de/products/sim808-uno-mikrocontroller-bundle-sonderpreis?variant=6330999832603
https://www.az-delivery.de/products/battery-expansion-shield-18650-v3-inkl-usb-kabel?variant=32344171872352
https://www.az-delivery.de/products/serielle-schnittstelle?variant=27476225289


the keypad board and query this key with the controller. I chose the GPIO25 for this 
purpose. In terms of circuitry, it would have been easier to use an OLED display 
instead of the keypad with LDC, but I didn't want to do without the buttons that I 
would otherwise have had to replace otherwise. Because somehow you have to be 
able to control the construction when you are out in the middle of nowhere. 
 
With the LCD, however, I have another problem. The display needs a supply voltage 
of 5V to work. This means that the inputs of the display, 4 times data, RS and E, are 
connected to 5V via pull-ups. But the ESP32 does not tolerate this at its outputs. The 
voltage level at the pins of the controller should not exceed 3.3V. The approach using 
voltage dividers was too time-consuming for me. A ULN2803 as a level converter 
would also have required more cables. Since there was already a MicroPython 
module for an I2C LCD in my tool box, I decided to buy an I2C adapter for the LCD. 
 

 
 
Its inputs are 3.3V-compatible and the outputs can handle the 5V from the display. 
To connect to the ESP32, only 2 lines, SCL (21) and SDA (22) are now required 
instead of the 6 direct connections. The I2C bus is also available to other sensors, 
such as a BMP / BME280, which is intended as an extension of the circuit. 
 
For the power supply I use a battery holder for an 18650 lithium cell because the two 
operating voltages 3.3V and 5V are already available via plug-in pins. The SIM808 
could even be supplied directly from the Li cell. In this case, however, a piece of wire 
would have to be soldered to the soldering points of the bracket on the circuit board. 
However, I prefer the 5V connections that can be routed directly to the SIM808 as 
well as the LCD keypad. 3.3V go to the I2C adapter and the ESP32. 
 



 
 
There remains the SIM808. It is normally supplied with voltages of 5..12V via the pipe 
socket (2.1x5.5), but it also offers a connection for 3.5 to 4.2V for a lithium cell. A 
connection next to one of the GND pins is available on the yellow pin header for 
external 5V. On the larger yellow pin base on the top left is GND and exactly below + 
5V Vin. 
 
It also makes sense to solder a cable to the pins of the power button, which is then 
connected to a pin (here GPIO4) of the ESP32. The controller can automatically start 
the SIM808 when it boots. The button then no longer needs to be operated. 
 

 
 
After the hardware, let's take a quick look at the software. Here is the list. 



 
Used software: 
For flashing and programming the ESP: 
Thonny oder  
µPyCraft 
MicropythonFirmware 
 
MicroPython-Module 
GPS-Modul für SIM808 und GPS6MV2(U-Blocks) 
LCD-Standard-Modul 
HD44780U-I2C-Erweiterung zum LCD-Modul 
Keypad-Modul 
Button Modul 
 

A few thoughts on MicroPython 
The interpreter language MicroPython is used in this project. The main difference to 
the Arduino IDE is that you have to flash the MicroPython firmware onto the ESP32 
before the controller understands MicroPython instructions. 
 
The graphic shows this difference, but also a second, perhaps even more important. 
 

 
 
After the firmware has been flashed, you can have a casual conversation with your 
controller, test individual commands and immediately see the answer without having 
to compile an entire program beforehand. Changes to program parts are updated 
individually under MicroPython. I don't really need to mention that this method is 

https://github.com/thonny/thonny/releases/download/v3.3.6/thonny-3.3.6.exe
https://github.com/DFRobot/uPyCraft/archive/master.zip
https://micropython.org/resources/firmware/esp32spiram-idf4-20200902-v1.13.bin
http://www.grzesina.de/az/gps/teil1/gps.py
http://www.grzesina.de/az/gps/teil1/lcd.py
http://www.grzesina.de/az/gps/teil1/hd44780u.py
http://www.grzesina.de/az/gps/teil1/keypad.py
http://www.grzesina.de/az/gps/teil1/button.py


faster. The following section tells you which steps are necessary to program in this 
convenient way. 
 

The development environment - example: Thonny 
Thonny is the counterpart to the Arduino IDE under MicroPython. In Thonny, a program 
editor and a terminal as well as other interesting development tools are combined in one 
interface. You have the working directory on the PC, the file system on the ESP32, your 
programs in the editor, the terminal console and, for example, the object inspector in one 
window. 
 
The resource for Thonny is the file thonny-3.3.x.exe, the latest version of which can be 
downloaded directly from the product page. There you can also get an initial overview of the 
features of the program. 

 
 
Right-click on Windows and save target as to download the file to any directory of your choice. 
Alternatively, you can also follow this direct link. 
In addition to the IDE itself, the Thonny bundle also includes Python 3.7 for Windows and 
esptool.py. Python 3.7 (or higher) is the basis for Thonny and esptool.py. Both programs are 
written in Python and therefore require the Python runtime environment. esptool.py also serves 
as a tool in the Arduino IDE to transfer software to the ESP32 (and other controllers). 
 
Now start the installation of Thonny by double-clicking on your downloaded file if you only want to 
use the software for yourself. If Thonny & Co. is to be available to all users, you must run the exe 
file as an administrator. In this case, right click on the file entry in Explorer and select Run as 
administrator. 
 
Most likely, Windows Defender (or your antivirus software) will answer you. Click on more 
information and, in the window that opens, click on Run anyway. Now just follow the user 
guidance with Next. 
 



 
 
Click on Install to start the installation process. 
 
When you start the program for the first time, you specify the language, then the 
editor window is displayed together with the terminal area. 
 
 

 
 



As the first action, set the type of controller used. With Run - Select Interpreter… you 
land in the options. For this project, please set Micropython (ESP32). 
 

 
 
Now download the Micropython firmware for the ESP32 and save this file in a 
directory of your choice. The bin file must first be transferred to the ESP32. This also 
happens to Thonny. Call up Thonny Options again with Run - Select Interpreter…. At 
the bottom right click on Install or update Firmware.  
 

 
 



 
 
Select the serial port to the ESP32 and the downloaded firmware file. Start the 
process with Install. After a short time, the MicroPython firmware is on the controller 
and you can send the first commands to the controller via REPL, the MicroPython 
command line. For example, enter the following command in the Terminal window. 
 
print ("Hello world") 
 

 
 
In contrast to the Arduino IDE, you can send individual commands to the ESP32 and, 
if it is MicroPython instructions, it will respond well. On the other hand, if you send a 
text that the MicroPython interpreter cannot understand, it will alert you to this with an 
error message. 
 
>>> print "hello again" 
 
SyntaxError: invalid syntax 
Traceback (most recent call last): 
  File "<stdin>", line 1 
SyntaxError: invalid syntax 



To work, however, the overview of the workspace and the device directory is still missing. 
The workspace is a directory on the PC in which all files important for a project are 
located. In Thonny his name is This Computer. The device directory is the counterpart on 
the ESP32. In Thonny it is called MicroPython device. You can display it as follows. 
 
Click on View and then click on Files 

 

 
 
Now both areas, the workspace at the top and the 
device directory at the bottom, are displayed. You 
can display additional tools via the View menu. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
We enter our programs in the editor area. For a new program, open an editor window 
by clicking the New button or using the key sequence Ctrl + N. 
 
In the Arduino IDE, libraries are recompiled each time the program is compiled and 
integrated into the program text. In MicroPython you only have to upload finished 
modules, they correspond to the libraries of the Arduino IDE, to the flash of the 
ESP32 once at the beginning. I will show this with an example. 
 
Create a project folder on your computer in any directory in Explorer. In this directory 
you create a folder with the name workspace. All further actions start in this directory 
and all programs and program parts will live there. 
 
The KEYPAD class is required in the project. The text for this is in the keypad.py file. 
The best thing to do is to load all modules into your workspace right away. If you 



have not already done so, start Thonny and navigate to your working directory in the 
"This Computer" window. The downloaded files should now appear in the workspace. 
A right click opens the context menu and the process is started by clicking on Upload 
to /.  
 

 
 
If you have changed something on a module, it must be uploaded again, but only this 
one. Then answer the security question about overwriting with OK.  
 

 
 
After uploading the first 4 modules it looks like this. The boot.py file in the device 
directory is automatically created when the firmware is flashed. At the end, when 
everything has been tested, we will copy the content of our program into this file. The 



ESP32 will then run the program autonomously each time it is started. A connection 
to the PC is then no longer necessary. 
 

 
 
Before we can test the modules, however, the hardware must first be connected. 
Please use the following circuit diagram as a guide. 
 



 
 
You can get a more readable copy by downloading the PDF file. 
 
A few remarks on the circuit should clarify its function. The LCD keypad is supplied 
with 5V, I mentioned that above. The ESP32 works with a maximum of 3.3V for the 
supply voltage and for the GPIO pins. Therefore the 5V level at the inputs and outputs 
of the LCD and the keypad must be reduced to ESP32-compatible values. The figure 
shows a possible connection of the cascade. 
 

 
 
The buttons SELECT, LEFT, UP, DOWN and RIGHT are connected to a resistor 
cascade, which in turn is connected to 5V at the hot end. The buttons apply the 
respective level to connection A0 of the keypad, which therefore carries 5V when idle. 
We halve the voltage applied here using a voltage divider made up of two 10kΩ 
resistors to a tolerable 2.5V. We connect the center tap to the analog input GPIO35 of 
the ESP32. We are making further adjustments in the KEYPAD class. 
 
So that the RST button on the ESP32 can also be used, we connect a 10kΩ resistor 
from the RST output to + 3.3V. We connect the RST output to the digital input GPIO25.  
 



 
 
 
If you solder a wire to the hot connection of the start button on the underside of the 
SIM808 board as in the following figure, you can switch on the module from the 
ESP32 with a pulse of one second duration. This can be done while booting, as I did 
in my program. In the idle state, the line is at 3.3V, so the pulse must be against 
GND. The module is switched off again with a pulse of more than 3 seconds. 
 

 
 
So, the hardware is ready, let's test the buttons on the LCD keypad. Let's start first on 
foot with REPL, the MicroPython command line, in the terminal area. We import the 
ADC class and the pin class from the integrated module machine, create an ADC 
object on GPIO35 and set its properties to 12-bit width (0… 4095) and maximum 
measuring range, ADC.ATTEN_11DB, with which the ESP32 has a maximum Can 
detect a voltage of approx. 3.3V. 
 
>>> from machine import ADC,Pin 
>>>a=ADC(Pin(35)) 
>>>a.atten(ADC.ATTN_11DB) 
>>>a.width(ADC.WIDTH_12BIT) 
>>>a.read()   
 
The result of the last command should return a value around 2500. Repeat the read 
command, but first press one of the keys. The following values came to light for me: 
 
 

SELECT: 1750 

LEFT: 1150 

DOWN: 670 

UP: 200 

RIGHT: 0 

 



For an easier query of the keys in the main program, I built a module around these 
values. It contains the KEYPAD class, which in turn has two methods, the 
constructor, that is the __init __ () method and the key () method. 
 
from machine import ADC,Pin 

 

class KEYPAD: 

 

        def __init__(self, pin=35): 

        self.a=ADC(Pin(pin)) 

        self.a.atten(ADC.ATTN_11DB) 

        self.a.width(ADC.WIDTH_12BIT) 

        self.a.read()  # erst mal Messung initialisieren 

        #self.keyValues=[0,200,680,1100,1750,2500] 

        adcMax=(self.a.read()+self.a.read()+self.a.read())//3 

        k=adcMax/2500 

        self.keyRange=[range(0,int(75*k)), 

                       range(int(100*k),int(300*k)), 

                       range(int(440*k),int(850*k)), 

                       range(int(900*k),int(1300*k)), 

                       range(int(1450*k),int(2000*k)), 

                       ] 

        print("KEYPAD initialized, Leerlauf: {}, / 

            k= {}".format(adcMax,k)) 

     

    def key(self): 

        s=0 

        for i in range(5): 

            s+=self.a.read() 

        m=s//5 

        for i in range(5): 

            if m in self.keyRange[i]: return i 

        return 5    from machine import ADC,Pin 

 

 
The key values fluctuate on the one hand due to measurement errors of the ADC 
(aka analog-digital converter) on the other hand due to differences in the supply 
voltage. therefore the constructor of future keypad objects will calibrate them when 
they are called. With the factor k, the limit values of the key recognition are adapted 
to the idle value without pressing a key. After my first measurements, I set the limit 
values according to the above scheme so that the areas do not overlap. I have 
grouped these range objects (in MicroPython everything is one object) in the 
keyRange list object. The individual fields are addressed by a list pointer, called an 
index. 
 
When creating classes, all objects that will become part of the later class instance, 
i.e. the object derived from the class, are given the prefix (aka prefix) self. The name 
of the object will later be used instead of self. You will soon see the connection when 
we test the KEYPAD class. 
 
First, let's take a look at the key () method. In order to reduce the spread of the ADC, 
I have the mean of 5 individual values averaged. In the following for loop, I check 



whether the mean value is in the range that is addressed by the index. If so, the 
index is returned as a function value. If not, the next area is checked. If none of the 
ranges matched, apparently no key was pressed and the value 5 was returned. 
 
Areas are also necessary as a throughput quantity for for-loops. Therefore you have 
to know that for a range all values greater than or equal to the first to the second 
count exclusively. So: 
 
range (0.5) = range (5) = 0,1,2,3,4 
range (23.24) = 23 
 
Now let's test the KEYPAD class. 
 
>>> from keypad import KEYPAD. 
>>> k = KEYPAD (35) 
>>> k.key () 
 
If you didn't press a key, the last command will return one 
 
5 
 
RIGHT delivers 0, UP a 1, DOWN a 2 and LEFT and SELECT 3 and 4. If these 
assignments do not result consistently, then this is most likely due to incorrectly set 
limit values in the constructor. You then have to redefine the key values and set the 
limit values sensibly. 
 
 
Let's get to the display. I have already explained why I chose the LCD above. On the 
other hand, I also like to use OLED displays, they are smaller and also allow simple 
graphic representations. So that a program can cope with both LCDs and OLEDs 
without changes, I have developed a module that uses the same user interface (aka 
API). This is followed by further modules that take care of the specific commands on 
the one hand and the control of the hardware on the other. The latter is usually of no 
interest to the user and, as a rule, it is possible to manage without device-specific 
commands. Only the type of hardware and the type of data transfer are important. 
However, it is always the case that the entire command structure is ultimately 
available to the user. This is made possible by inheriting classes. This means that all 
essential commands, represented by the methods of the classes, are in the same 
namespace. The LCD class inherits from PCF8574U and this in turn inherits from 
HD44780U. Ultimately, all methods from each of the three classes are available if 
you only import the class LCD in the following way. 
 
>>> from lcd import LCD 
>>> from machine import I2C, pin 
>>> i2c = I2C (-1, pin (21), pin (22)) 
>>> d = LCD (i2c, 0x27,16,2) 
this is the constructor of the HD44780U class 
Size: 2x4 
Constructor of PCF8574U class 
this is the constructor of the LCD class 
Size: 16x2 



>>> d 
<LCD object at 3ffe9540> 
>>> you (d) 
 
The last command gives you an extensive list of methods and attributes, the names 
of which you can find in one of the three class definitions. 
 
The same commands are superficially available for the LCD class as for the OLED 
class. Methods that do not make sense in one of the classes are secured in such a 
way that nothing happens, so there is no program termination or error message. For 
the present project, this means that you could always direct the display to an OLED 
display if you could find another solution for the button control. The method calls for 
the display do not have to be changed, only the constructor call needs to be adapted. 
 
Next, you can study and test the lcd.py module. I use an adapter with the PCF8574 
chip for the wiring, which converts I2C signals from the ESP32 to the parallel output 
to the LCD. You control the 2 + 4 (+2) control lines of the LCD module via 2 bus lines. 
And that including level conversion from 3.3V I2C of the ESP32 to 5V LCD input on 
the keypad. The connection distribution is as follows (see also circuit diagram). 
 

PCF8574 Bit 0 1 2 3 4 5 6 7 

LCD-Bit RS RW E BL D4 D5 D6 D7 

Keypad Shield D8  D9  D4 D5 D5 D7 

 
According to the use of the upper data nibble on the chip, the class PCF8574U is 
imported. U stands for UPPER.  
 
""" 

#### File: lcd.py 

#### Author: Juergen Grzesina 

#### Verwendung:  

Die Klasse LCD stellt die gleiche API wie OLED bereit,  

sodass beide 

Displays ohne Aenderung am Programm austauschbar sind. 

Folgende Methoden stehen in der Klasse LCD bereit: 

# LCD(i2c,Spalten,Zeilen) 

# writeAt(string,xpos,ypos, show=True) 

# clearFT(xv,yv[,xb=spalte][,yb=zeile, show=True) 

# clearAll() 

# (pillar(xpos,breite,hoehe, show=True)) 

# (setKontrast(wert)) 

# (xAxis(show=True), yAxis(show=True)) 

# switchOn(), switchOff() 

Die grafischen Methoden sind aus Kompatibilitaetsgruenden 

vorhanden 

haben aber keine Funktion auf dem Text-LCD. 

""" 

from hd44780u import PCF8574U as PCF 

#from hd44780u import PCF8574L as PCF 

 

class LCD(PCF):  



 

  CPL = const(20) 

  LINES = const(4) 

  HWADR =const(0x27) 

   

  def __init__(self, i2c, adr=HWADR, cols=CPL, lines=LINES): 

    #ESP32 Pin assignment 

    self.adr=adr 

    super().__init__(i2c,adr,cols,lines) 

    self.columns = cols 

    self.rows = lines 

    self.name="LCD" 

    self.clear() 

    print("this is the constructor of LCD class") 

    print("Size:{}x{}".format(self.columns, self.rows)) 

 

  # Put string s at position col x row y from  

  #left upper corner 0; 0 

  # for  

  # x = column 0..19 

  # y = row 0..3 

  def writeAt(self,s,x,y,show=True): 

    if x >= self.columns or y >= self.rows: return None 

    text = s 

    length = len(s) 

    if x+length < self.columns: 

      b = length 

    else: 

      b = (self.columns - x) 

      text = text[0:self.columns-x] 

    self.printAt(text,x,y) 

    return (x+length if x+length < self.columns else None) 

 

 

  def clearAll(self, show=True): 

    self.clear() 

 

  def setKontrast(self,k): 

    pass 

   

  def pillar(self,x,b,h, show=True): 

    pass 

   

  def xAxis(self, show=True): 

    pass 

   

  def yAxis(self, show=True): 

    pass 

 

  def switchOff(self): 

    self.display(0) 

   



  def switchOn(self): 

    self.display(1) 

 

  def clearFT(self,x,y,xb=None, yb=None, show=True): 

    if yb!=None and yb>=self.rows: return None   

    if xb==None: xb=self.columns-1 

    if xb >= self.columns:  

      xb = self.columns-1 

    blanks=" "*(xb-x+1) 

    self.printAt(blanks,x,y) 

    self.position(x,y) 

    return x 

 
The important methods from this module are the constructor and clearAll () as well as 
writeAt (). 
 
In the constructor __init __ (), which is called by LCD () in the program, we pass an 
I2C object that must have already been defined in the main program. If necessary, it 
can also be used for other purposes there, for example for a BMP280 module for 
measuring air pressure and temperature. 
 
i2c = I2C (-1, pin (21), pin (22)) 
 
Then the hardware address of the PCF8574 is transferred if it differs from the default 
address 0x27. This is followed by the number of columns and rows. It looks like this 
in the main program. 
 
d = LCD (i2c, 0x20, cols = 16, lines = 2) 
 
The writeAt () method takes the string to be output as the first parameter, followed by 
the column and row position in the display. Please note that both counts start from 
zero. 
 
 
The method 
 
clearAll () 
 
clears the entire display and places the cursor at position 0,0 (= top left corner). 
 
If you want to know the whole truth, please examine the contents of the ht44780u.py 
file. This is not absolutely necessary for the function of the current project, but I know 
that you want to know how the classes really work, so what is behind them. I'll just tell 
you that the HD44780U class has more to offer than the LCD class - turn cursor on 
and off, display on | out how does an LCD driver module work? Aroused interest? 
Sure, of course! 
 
Well, the most important thing for a GPS application is: How do I address the GPS 
services of the SIM808? 
 



Three stages lead to success. The first stage is purely manual, you have to slide the 
small slide switch right next to the pipe socket for the power supply in the direction of 
the SIM808 chip. A red LED lights up next to the GMS antenna socket. 
 
A little further to the left is the start button. If you press this for approx. 1 second, two 
more LEDs light up between the other two antenna sockets, the right one flashes. 
The active GPS antenna should already be connected to the left screw socket. 
 
So that you don't have to open the housing of your GPS receiver every time to start 
the SIM808, I recommend that you do the same and solder a cable to the hot 
connection of the start button. Viewed from above, it is the right one if the pipe socket 
also points to the right. You can now start the SIM808 by defining a GPIO pin of the 
ESP32 as an output and switching from high to low and back to high for one second. 
I intended pin 4 for this. 
 
When the constructor is called for the GPS object, the number of the pin is 
transferred together with the display object as a parameter. 
 
>>> from gps import GPS, SIM808 
>>> g = SIM808 (4, d) 
 
If no display object (d) is passed, there is also no output on the LCD or OLED. There 
is no error message and the key control works. Almost all important results are also 
output in the terminal window. 
 
The GPS class does most of the work. As mentioned, the constructor expects a 
display object that must be defined in the calling program or must already be known. 
A serial channel to the SIM808 is opened at 9600 baud, 8,0,1 then the instance 
variables are set up to record the GPS data. 
 
The waitForLine () method does what its name says, it waits for a NMEA sentence 
from the SIM808. The type of NMEA sentence that is expected is given as a 
parameter. If the record is complete and free of errors, it is returned to the calling 
program. In the current version of the program, $ GPRMC and $ GPGGA records can 
be received. They contain all relevant data such as validity, date, time, geographical 
latitude (latitude, from the equator to the poles in degrees) and longitude (longitude 
from the zero meridian +/- 180 °) as well as height above sea level in meters. 
 
The decodeLine () method takes the received record and tries to decode it. This 
method contains a local function that converts the angle specifications into the 
formats degrees, minutes, seconds and fractions, degrees and fractions, or degrees, 
minutes and fractions, according to the specification of the mode attribute. 
 
The method printData () outputs a data record in the terminal window. showData () 
returns the result to the display. Because only a two-line display is used, the display 
must be divided into three sections. The keys on the keypad take control. 
 
 
You are probably most interested in the methods of class SIM808, because this is 
how the GPS data is only processed in the ESP32.  
 



Basically, the data exchange between ESP32 and SIM808 takes place via a serial 
data connection with 9600 baud, 8,0,1. This means that 9600 bits are transmitted per 
second, whereby a data frame (aka frame) consists of 8 data bits, 0 parity bits and 
one stop bit. The start bit is mandatory and is not mentioned in this list. A data frame 
thus comprises 10 bits, the LSB (aka Least Significant Bit) is transmitted first after the 
start bit (0). The stop bit (1) completes the transmission. At the TTL level, a 1 
corresponds to the 3.3V level, the 0 to the GND level. 
 
Because the UART0 interface is reserved for REPL, a second interface must be 
available for the conversation with the SIM808. The ESP32 provides such a UART2. 
The connections for RXD (reception) and TXD (transmission) can even be freely 
selected. For full duplex operation (send and receive simultaneously) the RXD and 
TXD connections from the ESP32 to the SIM808 must be crossed. You can 
understand this on the circuit diagram. The default values on the ESP32 are RXD = 
16 and TXD = 17. The connection is organized by the gps.GPS class. 
 
This begins when the SIM808 is switched on. If you followed my recommendation 
and soldered a cable to the power button, you can now switch on the SIM808 with 
the following command, provided that this cable is connected to pin 4 of the ESP32. 
 
>>> g.SIMOn () 
 
Commands to the SIM808 are transmitted in AT format. The same procedure takes 
place in connection with the AT firmware of the ESP8266 modules. However, the 
scope of commands with the SIM808 is significantly larger. But don't worry, two of the 
AT commands are basically sufficient for our project. They are combined in the 
methods init808 () and deinit808 (). 
 
    def init808 (self): 
        self.u.write ("AT + CGNSPWR = 1 \ r \ n") 
        self.u.write ("AT + CGNSTST = 1 \ r \ n") 
 
    def deinit808 (self): 
        self.u.write ("AT + CGNSPWR = 0 \ r \ n") 
        self.u.write ("AT + CGNSTST = 0 \ r \ n") 
 
AT + CGNSPWR = 1 switches on the power supply to the GPS module and AT + 
CGNSTST = 1 activates the transmission of the NMEA sentences to the ESP32 via 
the serial interface UART2. The controller receives the information from the SIM808 
and provides it in the manner described above via the terminal and LCD. 
 
In addition to the hardware control of the SIM808, the gps.py module also contains 
the necessary commands for the smaller GPS system GPS6MV2 with the Neo 6M 
chip from UBLOX. This module is not controlled by AT commands, but by its own 
syntax. 
 
The listing follows to study the gps module in more detail. 
  



 
""" 

Die enthaltenen Klassen sprechen einen ESP32 als Controller 

an. 

Dieses Modul beherbergt die Klassen GPS, GPS6MV2 und SIM808 

GPS stellt Methoden zur Decodierung und Verarbeitung der NMEA-

Saetze 

$GPGAA und $GPRMC bereit, welche die wesentlichen Infos zur 

Position, Hoehe und Zeit einer Position liefern. Sie werden 

dann 

angezeigt, wenn die Datensaetze als "gueltig" gemeldet werden. 

GPS6MV2 und SIM808 beziehen sich auf die entsprechende 

Hardware. 

""" 

from machine import UART,I2C,Pin 

import sys 

from time import sleep 

 

class GPS: 

    #  

    gDeg=const(0) 

    gFdeg=const(1) 

    gMin=const(1) 

    gFmin=const(2) 

    gSec=const(2) 

    gFsec=const(3) 

    gHemi=const(4) 

     

    def __init__(self,disp=None):  # display mit OLED-API 

        self.u=UART(2,9600)  # Mit standardPins rx=16, tx=17 

        # u=UART(2,9600,tx=19,rx=18)  # mit alternativen Pins 

        self.display=disp 

        self.timecorr=2 

        self.Latitude="" 

        self.Longitude="" 

        self.Time="" 

        self.Date="" 

        self.Height="" 

        self.Valid="" 

        self.Mode="DMF" # default 

        self.AngleModes=["DDF","DMS","DMF"] 

        self.displayModes=["time","height","pos"] 

        self.DMode="pos" 

        # DDF = Degrees + DegreeFractions 

        # DMS = Degrees + Minutes + Seconds + Fractions 

        # DMF = Degrees + Minutes + MinuteFraktions 

        print("GPS initialized") 

 

    def decodeLine(self,zeile): 

        latitude=["","","","","N"] 

        longitude=["","","","","E"] 

 



        def formatAngle(angle):  # Eingabe ist Deg:Min:Fmin 

            minute=int(angle[1])     # min als int 

            minFrac=float("0."+angle[2]) # minfrac als float 

            if self.Mode == "DMS": 

                seconds=minFrac*60 

                secInt=int(seconds) 

                secFrac=str(seconds - secInt) 

                

a=str(int(angle[0]))+"*"+angle[1]+"'"+str(secInt)+secFrac[1:6]

+'"'+angle[4] 

            elif self.Mode == "DDF": 

                minutes=minute+minFrac 

                degFrac=str(minutes/60) 

                a=str(int(angle[0]))+degFrac[1:]+"* "+angle[4] 

            else: 

                

a=str(int(angle[0]))+"*"+angle[1]+"."+angle[2]+"' "+angle[4] 

            return a 

 

        # GPGGA-Fields 

        nmea=[0]*16 

        name=const(0) 

        time=const(1) 

        lati=const(2) 

        hemi=const(3) 

        long=const(4) 

        part=const(5) 

        qual=const(6) 

        sats=const(7) 

        hdop=const(8) 

        alti=const(9) 

        auni=const(10) 

        geos=const(11) 

        geou=const(12) 

        aged=const(13) 

        trash=const(14) 

        nmea=zeile.split(",") 

        lineStart=nmea[0] 

        if lineStart == "$GPGGA": 

            

self.Time=str((int(nmea[time][:2])+self.timecorr)%24)+":"+nmea

[time][2:4]+":"+nmea[time][4:6] 

            latitude[gDeg]=nmea[lati][:2] 

            latitude[gMin]=nmea[lati][2:4] 

            latitude[gFmin]=nmea[lati][5:] 

            latitude[gHemi]=nmea[hemi] 

            longitude[gDeg]=nmea[long][:3] 

            longitude[gMin]=nmea[long][3:5] 

            longitude[gFmin]=nmea[long][6:] 

            longitude[gHemi]=nmea[part] 

            self.Height,despose=nmea[alti].split(".") 



            self.Latitude=formatAngle(latitude)  # mode = 

Zielmodus Winkelangabe 

            self.Longitude=formatAngle(longitude) 

        if lineStart == "$GPRMC": 

            date=nmea[9] 

            self.Date=date[:2]+"."+date[2:4]+"."+date[4:] 

            try: 

                self.Valid=nmea[2] 

            except: 

                self.Valid="V" 

 

    def waitForLine(self,title): 

        line="" 

        c="" 

        while 1: 

            if self.u.any(): 

                c=self.u.read(1) 

                if ord(c) <=126: 

                    c=c.decode() 

                    if c == "\n": 

                        test=line[0:6] 

                        if test==title: 

                            return line 

                        else: 

                            line="" 

                    else: 

                        if c != "\r": 

                            line +=c 

         

    def showData(self): 

        if self.display: 

            if self.DMode=="time": 

                

self.display.writeAt("Date:{}".format(self.Date),0,0) 

                

self.display.writeAt("Time:{}".format(self.Time),0,1) 

            if self.DMode=="height": 

                self.display.writeAt("Height: {}m   

".format(self.Height),0,0)  

                

self.display.writeAt("Time:{}".format(self.Time),0,1) 

            if self.DMode=="pos": 

                self.display.writeAt(self.Latitude+" "*(16-

len(self.Latitude)),0,0) 

                self.display.writeAt(self.Longitude+" "*(16-

len(self.Longitude)),0,1) 

         

    def printData(self): 

        print(self.Date,self.Time,sep="_") 

        print("LAT",self.Latitude) 

        print("LON",self.Longitude) 

        print("ALT",self.Height) 



         

    def showError(self,msg): 

            if self.display: 

                self.display.clearAll() 

                self.display.writeAt(msg,0,0) 

                pass 

            print(msg) 

 

 

class SIM808(GPS): 

    def __init__(self,switch=4,disp=None): 

        self.switch=Pin(switch,Pin.OUT) 

        self.switch.on() 

        self.display=disp 

        super().__init__(disp) 

        print("SIM808 initialized") 

     

    def SIMOn(self): 

        self.switch.off() 

        sleep(1) 

        self.switch.on() 

 

    def SIMOff(self): 

        self.switch.off() 

        sleep(3) 

        self.switch.on() 

 

    def init808(self): 

        self.u.write("AT+CGNSPWR=1\r\n") 

        self.u.write("AT+CGNSTST=1\r\n") 

 

    def deinit808(self): 

        self.u.write("AT+CGNSPWR=0\r\n") 

        self.u.write("AT+CGNSTST=0\r\n") 

         

    def stopTransmitting(self): 

        self.u.write("AT+CGNSTST=0\r\n") 

 

    def startTransmitting(self): 

        self.u.write("AT+CGNSTST=1\r\n") 

 

 

class GPS6MV2(GPS): 

    # Befehlscodes setzen 

    GPGLLcmd=const(0x01) 

    GPGSVcmd=const(0x03) 

    GPGSAcmd=const(0x02) 

    GPVTGcmd=const(0x05) 

    GPRMCcmd=const(0x04) 

 

    def __init__(self,delay=1,disp=None): 

        super().__init__(disp) 



        self.display=disp 

        self.delay=delay  # GPS sendet im delay Sekunden 

Abstand 

        period=delay*1000 

        

SetPeriod=bytearray([0x06,0x08,0x06,0x00,period&0xFF,(period>>

8)&0xFF,0x01,0x00,0x01,0x00]) 

        self.sendCommand(SetPeriod) 

        self.sendScanOff(bytes([GPGLLcmd])) 

        self.sendScanOff(bytes([GPGSVcmd])) 

        self.sendScanOff(bytes([GPGSAcmd])) 

        self.sendScanOff(bytes([GPVTGcmd])) 

        self.sendScanOn(bytes([GPRMCcmd])) 

        print("GPS6MV2 initialized") 

 

    def sendCommand(self,comnd):  # comnd ist ein bytearray 

        self.u.write(b'\xB5\x62') 

        a=0; b=0 

        for i in range(len(comnd)): 

            c=comnd[i] 

            a+=c  # Fletcher Algorithmus 

            b+=a 

            self.u.write(bytes([c])) 

        self.u.write(bytes([a&0xff])) 

        self.u.write(bytes([b&0xff])) 

                

    def sendScanOff(item):  # item ist ein bytes-objekt 

        shutoff=b'\x06\x01\x03\x00\xF0'+item+b'\x00' 

        self.sendCommand(shutoff) 

 

    def sendScanOn(item): 

        turnon=b'\x06\x01\x03\x00\xF0'+item+b'\x01' 

        self.sendCommand(turnon) 

 

 

 
The application program itself is quite manageable thanks to the different classes. If 
you pack it in the boot.py file and upload it to the ESP32, it will start autonomously 
without the need for the USB connection to the PC. So you are independent in the 
field. The display takes place via the LCD and control via the keypad buttons. Here is 
the listing of the main GPS program 
 
from time import sleep 

from gps import GPS,SIM808 

from lcd import LCD 

from keypad import KEYPAD 

from machine import ADC, Pin, I2C 

i2c=I2C(-1,Pin(21),Pin(22)) 

 

#LUA-Pins     D0 D1 D2 D3 D4 D5 D6 D7 D8 

#ESP8266 Pins 16  5  4  0  2 14 12 13 15  

 



k=KEYPAD(35) 

d=LCD(i2c,0x20,cols=16,lines=2) 

d.printAt("SIM808-GPS",0,0) 

d.printAt("GPS booting",0,1) 

sleep(1) 

g=SIM808(4,d) 

g.init808() 

g.SIMOn() 

sleep(10) 

g.mode="DDF" 

while 1: 

    rmc=g.waitForLine("$GPRMC") 

    try: 

        g.decodeLine(rmc) 

        if g.Valid == "A": 

            try: 

                gga=g.waitForLine("$GPGGA") 

                g.decodeLine(gga) 

                g.printData() 

                g.showData() 

            except: 

                g.showError("Invalid GGA-set!") 

    except: 

        g.showError("Invalid RMC-set!") 

    wahl=k.key()     

    if 0<=wahl<=2: 

        d.clear() 

        g.Mode=g.AngleModes[wahl] 

        g.DMode="pos" 

    if wahl==3: 

        d.clear() 

        g.DMode="time" 

    if wahl==4: 

        d.clear() 

        g.DMode="height" 

    sleep(0.1) 

 
Now you only need to stow all the equipment in a box and then the mail goes off to 
the site. And who knows, maybe after the test you will pack everything in an elegant 
housing. 
 
As indicated at the beginning, the use of the ESP32 opens up various applications for 
additional sensors. In the second part of this article I put a BMP / BME280 into 
service in addition to the SIM808. This creates a tracking module that can provide 
weather data as well as geodata. 
 
More download links: 
 
Beitrag als PDF 
Episode as PDF 
 

http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_ger.pdf
http://www.grzesina.de/az/gps/teil1/gps_mcp_teil1_eng.pdf

