

MicroPython with ESP32/ESP8266 – Part 5

Today the secret of what the project is about after all the preparations will be
revealed. We build a circuit board to measure nuclear radiation and then work on the
topic esptool.py. Discussing the homework brings a lot of additional know-how. So
welcome to the fifth part of the series.

Over 100 years ago, Marie Sklodowska-Curie published her doctoral thesis entitled
"RECHERCHES SUR LES SUBSTANCES RADIOACTIVES" "Investigations into
radioactive substances". Since 1903 the methods of measuring nuclear radiation
have changed and improved enormously. The measuring device designed by
Messrs. Geiger and Müller works with a special tube and with voltages between 300V
and 500V. The circuit I am describing today is content with 5V.

Of the three types of radiation, alpha, beta, and gamma radiation, which come from
the interior of the atomic nucleus, our structure can detect the latter type quite well,
because it is an electromagnetic wave, similar to visible light. So what could be more
obvious than using a photodiode as a sensor. Gamma radiation can penetrate the
plastic layer of our sensor like light, which the other two types cannot. Alpha radiation
consists of fast helium nuclei and can be stopped with a sheet of paper. The fast
electrons of the beta radiation get stuck in 1mm aluminum or plastic.

Our sensor is a PIN diode. The 500 to 1000 nm thick, weakly negatively doped
intrinsic region is strongly positive on one side and strongly negatively doped on the
other. Light can enter through the thin p-doped side (approx. 35 nm), which can
release charge carriers in the broad intrinsic range, which are accelerated in the
applied electrical field, which leads to a current pulse. In contrast to normal PN
diodes, the broad intrinsic range means that there is a higher probability that charge
separation will be caused by light quanta. In our case, this task falls to the gamma
quanta of the nuclear radiation.

So that the much stronger surrounding daylight does not come into play and all weak
gamma signals are superimposed, the measurement must take place in the dark.
That is one reason why the sensor part of the circuit has to be put into a well-closable
tin can. On the other hand, the can simply serves as an electrical shield so that the
"normal" electrosmog around us cannot disturb the sensitive circuitry. That's why it
has to be a tin can, plastic shields light but does not shield electrical fields. More on
that later.

We build the sensor for today's experiments from individual parts on a breadboard.
The following material is needed for this.

1 LM 358 DIP Operationsverstärker, 2-fach, DIP-8

1 36pol. Stiftleiste, gerade, RM 2,54

1 Buchsenleiste, 20-polig, einreihig, RM 2,54, gerade

1 BF 256B N-Kanal J-FET, 30V, 13mA, 350mW, TO-92

1 BPW 34 Silizium-PIN-Fotodiode, 50µA / 430...1100nm

1 100 Ohm Widerstand, Metallschicht

1 1,00K Widerstand, Metallschicht

1 4,7K Widerstand, Kohleschich

2 10,0K Widerstand, Metallschicht

1 15,0K Widerstand, Metallschicht

1 33k Widerstand, Metallschicht

2 330K Widerstand, Metallschicht

1 1,00M Widerstand, Metallschicht

2 10M Widerstand, Kohleschicht

3 100N Vielschicht-Keramikkondensator

2 KERKO 47P Keramik-Kondensator 47P

1 33N Vielschicht-Keramikkondensator

2 Elko, radial, 100 µF, 25 V

1 PCB Board Set Lochrasterplatte

1 Blechdose mit Blechdeckel ca. 9cm Ø und 4cm hoch, lichtdicht

1 Schraube M3 mit Beilage und Mutter

 etwas Schaltdraht

1 LM 358 DIP operational amplifier, 2-way, DIP-8
1 36pol. Pin header, straight, pitch 2.54
1 socket strip, 20-pin, single row, RM 2.54, straight
1 BF 256B N-channel J-FET, 30V, 13mA, 350mW, TO-92
1 BPW 34 silicon PIN photodiode, 50µA / 430 ... 1100nm
1 100 ohm resistor, metal layer

https://az-delivery.de/products/pcb-board-set-lochrasterplatte-platine-leiterplatte-4x4-stuck?variant=6392038621211

1 1.00K resistor, metal layer
1 4.7K resistor, coal layer
2 10.0K resistor, metal layer
1 15.0K resistor, metal layer
1 33k resistor, metal layer
2 330K resistor, metal layer
1 1.00M resistor, metal layer
2 10M resistor, carbon layer
3 100N multilayer ceramic capacitor
2 KERKO 47P ceramic capacitor 47P
1 33N multilayer ceramic capacitor
2 electrolytic capacitors, radial, 100 µF, 25 V
1 PCB board set breadboard
1 tin can with sheet metal lid approx. 9cm Ø and 4cm high, light-tight
1 M3 screw with washer and nut some hookup wire

You will also need the following parts. If you've studied the previous episodes, you
probably already have most of them.

1 ESP32 NodeMCU Module WLAN WiFi Development Board oder

1 ESP-32 Dev Kit C V4 or

1 NodeMCU Lua Lolin V3 Module ESP8266 ESP-12F mit CH340

1 0,91 Zoll OLED I2C Display 128 x 32 Pixel für Arduino und Raspberry Pi oder

1 0,96 Zoll OLED I2C Display 128 x 64 Pixel für Arduino und Raspberry Pi

1 KY-012 Buzzer Modul aktiv

2 LED and

2 Resistor 330 ohm for LED or

1 KY-011 Bi-Color LED Modul 5mm und

2 Widerstand 560 Ohm für LED or

1 KY-009 RGB LED SMD Modul and

1 Resistor 330 Ohm for blue LED

1 Resistor 2,2 kOhm for red LED

1 Resistor 3,3 kOhm for green LED

1 KY-004 Taster Modul or

1 keypad-ttp224-14-kapazitiv

2 Mini Breadboard 400 Pin mit 4 Stromschienen

1 Jumper Wire Kabel 3 x 40 STK. je 20 cm M2M/ F2M / F2F

2 Sheet metal pieces approx. 20 x 20 mm (not aluminum!) Or remnants of
circuit boards

 some plug pins 0,6x0,6x12mm

The following tool is helpful.
Soldering iron or station, fine tip,
tin solder small side cutter
small screwdriver
3mm drill (manual operation or minimot)
Hand saw with metal blade
 possibly a "third hand" to hold the board while soldering
possibly digital voltmeter
small flat file or a piece of sandpaper grit 120-150

https://www.az-delivery.de/products/esp32-developmentboard
https://www.az-delivery.de/products/esp-32-dev-kit-c-v4?_pos=1&_sid=ce0681542&_ss=r
https://az-delivery.de/products/copy-of-nodemcu-lua-amica-v2-modul-mit-esp8266-12e?variant=36247507474
https://www.az-delivery.de/products/0-91-zoll-i2c-oled-display?_pos=3&_sid=be0d2658c&_ss=r
https://www.az-delivery.de/products/0-96zolldisplay?_pos=2&_sid=be0d2658c&_ss=r
https://www.az-delivery.de/products/buzzer-modul-aktiv?_pos=3&_sid=51b2d727b&_ss=r
https://www.az-delivery.de/products/bi-color-led-modul?_pos=2&_sid=22993e4cd&_ss=r
https://www.az-delivery.de/products/smd-rgb-modul?_pos=3&_sid=e517cbf27&_ss=r
https://www.az-delivery.de/products/button-modul?_pos=1&_sid=3dcf8008f&_ss=r
https://www.az-delivery.de/en/products/az-delivery-keypad-ttp224-1x4-kapazitiv?_pos=6&_sid=49cd63b1d&_ss=r
https://www.az-delivery.de/products/mini-breadboard?_pos=3&_sid=926d91397&_ss=r
https://www.az-delivery.de/products/3er-set-40-stk-jumper-wire-m2m-f2m-f2f?_pos=2&_sid=8ce9747af&_ss=r

Structure of the sensor and amplifier board
For my construction I used a breadboard from this set PCB Board Set breadboard. If
you don't want to go into series production, a breadboard structure is sufficient.

The columns and lines of the circuit board are provided with letters and numbers so
that the position of the component connections can be easily understood and
checked. I wanted to know and actually managed to build both circuit parts on one of
the narrow strips of the set. If you're not that sure about soldering, use 2 strips,
maybe even the wider ones. Of course, the original drawing is then unfortunately no
longer correct.

The illustration shows the top of the board. The letters then run in alphabetical order
from left to right, the numbers from bottom to top. The back is labeled in the same
way so that, for example, hole A01 is the same when viewed from both sides.

There are different approaches on the Internet, all of which ultimately have the same
goal of reducing the short and weak voltage signals of the PIN diode to a duration
and magnitude that can be evaluated by the microcontroller. This can be done purely
digitally, in that the captured decay product is translated into a digital pulse of a
defined length. I found the basis for the circuit used here in Elektor years ago. I
added a high-pass filter to the output of the amplifier, which suppresses low-
frequency noise up to 300Hz and significantly improves the useful signal. The 33kΩ
resistor is used to increase the level so that no negative voltages can occur at the
ESP32 / ESP8266 analog input. Here is the schematic of the circuit.

The left part up to the green line is the sensor part that is banned into the can. Three
wires lead out and are connected to the amplifier board, which makes up the right
part of the schematic.

The implementation of the circuit on the board is shown in the next figure. In the top
picture you look from above at the components and circuit board. The conductor
tracks lie as if the circuit board were transparent. In the second picture, same
direction of view, the conductor tracks have been left out so that the labeling of the
components can be read better.

In the third picture, the board is tilted around the long side and you are looking at the
conductor tracks from below. This should look something like this when you have
finished soldering. The lines are created simply by bending the component wiring and
soldering it step by step. Make sure, however, that there are several connections in
some course. Only solder when all wires have found a hole. It is difficult to remove
solder from a drill hole afterwards!

The equipment is always from above. Check carefully the position and alignment of
the components. Photodiode BPW34, transistor BF256 and the electrolytic capacitors
must be inserted the right way round according to their polarity. If you start from the
left, you can also follow your progress on the schematic. The coordinates with letters
and numbers will help you.

For the photodiode, the transistor and the IC LM2904 = LM358, parts of the socket
strip are used as a socket, which makes it easier to replace them. Parts of the pin
header are used for the plug connections from board to board and to the ESP32. The
wiring to the amplifier itself can then be done with jumper cables.

The following illustrations should help you to identify the components and their
location.

After the complete assembly, the board is separated at column K. Then clean the
edges with the help of the sandpaper. It should look something like this. (The rows of
sockets at I and M were later replaced by rows of pins. The transistor is bent down.)

For experts who can produce circuit boards themselves, I also have this layout, which
can be downloaded as a PDF file with the assembly plan. I have described the
production of circuit boards by the ironing method in more detail here.

http://grzesina.de/az/blog_mcp5/kernstrahlungssensor_mit_BPW34.pdf
http://www.grzesina.de/avr/platinen/buegeln.html

The finished circuit does not need to be adjusted and should do its job right from the
start. In order for it to do that, the inside of the can must be lined with a non-
conductive material to prevent short circuits. I used thick cling film and attached it to
the floor and wall with adhesive pads.

I soldered a pin of the pin header with some jumper wire and then fixed it to the wall
of the socket with the screw. The connection with the sensor circuit to the pin at
position F1 is established using a jumper cable. This ground connection is absolutely
necessary to suppress the circuit's tendency to oscillate. The board is now attached
to the floor. that the sensor can be easily approached to a radiation source. I will
come to what can serve this purpose in a moment. For the connection to the amplifier
board you need three jumper cables fm - fm for Vcc, signal and GND. If the cables
can be led out between the lid and the can, this is good, if not, they have to be fed
through a hole in the side wall. Of course you have to glue the hole light-tight again.

Samples for the radiation meter
Let's get to the rehearsals. Since hardly anyone has a castor in their basement that
they can use to measure radiation, we have to look around for simple everyday
objects that emit nuclear radiation.

In this context I would like to point out that the measured values are in no way related
to the SI system of sizes. It is therefore not possible to make statements about the
absorbed dose D in Gray (Gy) or the equivalent dose H = q • D in Sievert (Sv) with
this simple device, as is claimed in the electronic article. Even a specification in
Becquerel (Bq) is not possible because the mass and type of the emitter would have
to be known. With the samples listed here, neither can be determined. This article is
therefore limited to the specification cpm = counts per minute = decay rates per
minute and the representation of relative energy values.

Here are a few photos of items that could be used. You can find a more
comprehensive presentation here

The orange uranium glaze on the can is a good test source, as is the black print on
the cup or the underglaze color of the cat. Much less effective is uranium glass,
which usually comes in green or yellow, but can also have other colors. One of the
main properties of uranium glass is that it fluoresces green when exposed to UV light.
The potassium content of the mica minerals brings only weak gamma signals. On the
other hand, the radium content of the luminous paint on the hands and dials of old

http://grzesina.de/radioakt/dinge.htm#start

clocks can be easily traced. If you take parts out of it, you should pack them in an
airtight plastic sleeve for experimentation so that dust or small particles cannot be
inhaled or swallowed. Therefore, one should not eat, drink or smoke during the
experiments with the parts of clocks. And then wash your hands!

The following things can often be found at flea markets.

If you don't have any of these at home, you can try potash (potassium carbonate) or
diet salt (potassium chloride) from the nearest supermarket. Natural potassium
contains 0.0117% of the radioactive isotope potassium40 (K40). About 90% of this is
converted into calcium40 with beta decay. The remaining approx. 10% of the decay

events are based on the capture of an electron from the K shell by the atomic
nucleus and the subsequent emission of a gamma quantum. This creates argon40.
Our sensor detects such a process approximately every one to two minutes, which is
also due to the very small sensor area of just 7mm². The result is a voltage pulse of
up to 300mV at the amplifier output, which goes well above the background noise.
Uranium glazes deliver pulses that can be more than twice as high. The uranium
glaze fragment in the photo is folded down onto the sensor for measurement.

Basic conditions for the measurements are
• If possible, interference-free power supply of 5V
• Isolate the sensor from ambient light in the can
• Closing the lid with a conductive connection to the socket
• Silence - every little scratching on the table or normal speaking leads to interference
at the amplifier output.

The last point is easy to overlook. As a side effect, the can acts as an extremely
sensitive condenser microphone. Slightly scratching the table results in signals at the
output that can be three to four times higher than the useful signal.

It is of course ideal if you have an oscilloscope at hand, because you can use it to
control the signal situation at the amplifier output. The very strong pulse with 700mV
in the next picture comes from a piece of uranium glaze directly in front of the sensor
window. The signals are a little less if the sample is placed on the outside of the can
lid instead of directly in front of the sensor in the can. Then the aluminum has to be
penetrated and the approx. 3 cm air in the can up to the sensor. But the sensor still
responds.

Scratching the table looks like this.

Programming and measuring
Now we come to the measurements. What we need is a program that monitors the
level at the amplifier output in order to determine its maximum as precisely as
possible when a voltage pulse occurs. For us, the maximum voltage value is a

relative measure of the energy of the triggering gamma quantum released in the
intrinsic zone. Because, because of the thin layer, it cannot be guaranteed that the
entire gamma energy for charge separation was absorbed, the size of the voltage
pulse does not necessarily reflect the total energy of the gamma quantum, but only
the absorbed portion.

We cannot measure absolute energy values with the device anyway, because it is
not calibrated, we simply lack the reliable comparison between the cause (gamma
energy) and the effect (voltage pulse). What we can do, however, is a breakdown of
the frequency with which certain absorbed portions of energy occur. With the help of
the OLED display we can create a "gamma spectrum" of the radiation source. Ah,
now you can say for sure, we needed the bar charts for that, and you are right. You
probably have suspicions when it comes to speed measurement with the ADC. I can
confirm that too, because that's where we start.

From the pulse diagram above, you can see that the positive pulse lasts about 0.3 to
0.4 milliseconds. The ESP32 has to keep up with about 13 measurements per
millisecond to get the peak value. For an ESP8266, with 4 to 5 measurements in this
time, it is more of a coincidence if it gets exactly the peak value. Such considerations
are very important for the selection of a controller for time-critical tasks and that
clearly speaks in favor of the ESP32. Tests have shown, however, that the ESP8266-
12F still produces good results.

Next point, when should the measurement of a pulse begin? Clear answer, when the
voltage level exceeds the noise floor. We have to determine this value, noise, of the
basic noise, as well as the quiescent level ruhePegel and the maximum expected
value cntMax. I have added a graphic below that shows the interaction of the various
levels.

The circuits for ESP32 and ESP8266 look different. I'll start with the ESP32.

The ESP32 as a measurement servant

I apply the voltage at the amplifier output of the sensor unit to pin 34 of the ESP32. I
set the bit width of the ADC to 10bit and as the voltage range I choose 3.3V to start
with. I put everything together in the test program ruhepegel.py. The sample is
removed from the can, then I start the measurement, which determines the average
ADC level at the amplifier output for 10 seconds. Make a note of this value, we still
need it.

Next, the amplitude of the noise signal is important. The maximum.py program
determines the absolute peak value on the signal line. If there is no sample in the
can, this provides the maximum transducer value of the noise of the glitches caused
by the noise. We note down the associated ADC value maximum. The maximum
noise signal in ADC units (LSB) is therefore noise = maximum.

With the same program maximum.py we now determine the maximum ADC value,
cntMax, which is created by the pulses from the radiation sensor. That tells us which
voltage range we need to set for the measurements. We place the sample in the can
on the sensor and start the measurement for at least 60 seconds. We also note the
ADC value cntMax.

My values were quiet level = 449, noise = 500 and cntMax = 713. This corresponds
to Uo = 449/1023 * 3.3V = 1.45V quiet level. The noise amplitude, noise - quiet level,
is 51 LSB, which corresponds to 164 mV. Everything that goes beyond that can be
seen as a useful signal. With 713 LSB we calculate the maximum voltage level to be
2.3V. That is more than 2.0V and that means that we have to continue to work with
the already set range value 11DB in order not to overload the ADC input.

http://grzesina.de/az/blog_mcp5/ruhepegel.py
http://grzesina.de/az/blog_mcp5/maximum.py

The following graphic illustrates the relationships. The voltages are only of interest for
estimating the input voltage range of the ESP32. Otherwise we limit ourselves to the
converter values, because we are only concerned with relative ADC values and not
with absolute voltage values.

The three values that have been determined so far - restPegel, noise and cntMax -
are now transferred to the actual measuring program, measure.py, in order to serve
there as default values for the moment. The following graphic provides an overview
of the various values.

Now let's take a look at the programs. The import of the necessary modules, the
instantiation and assignment of the start values, the preparation of the time control as
well as the evaluation of the measurements represent the greatest extent in
ruhepegel.py and maximum.py. The essentials happen in the while loops with one or
two command lines .

Download ruhepegel.py
ruhepegel.py
from machine import ADC, Pin
from time import time, sleep
ksPin = 34
Auflsg = ADC.WIDTH_10BIT
Bereich = ADC.ATTN_11DB

led = Pin(2,Pin.OUT)
sleep(3)
led.on()
rad = ADC(Pin(ksPin))
rad.atten(Bereich) # Messbereich: 3.3V
rad.width(Auflsg) # Aufloesung 512 Bit
ruhe = 0
n = 0
laufZeit = 10
current = time()
start = current
end = current+laufZeit
while current <= end:
 ruhe = ruhe + rad.read()
 current = time()
 n += 1
led.off()
print ("Ruhepegel =",ruhe/n)
print ("Messungen:",n)
print ("Messungen {} / ms".format(n/(laufZeit*1000)))

For the quiescent level, all measured values are added up and then divided by the
number of measurements for the display. According to the rules of statistics, if there
are a large number of measurements, this results in the rest level as the mean value.

http://grzesina.de/az/blog_mcp5/ruhepegel.py

Download maximum.py
maximum
from machine import ADC, Pin
from time import time, sleep
ksPin = 34
Auflsg = ADC.WIDTH_10BIT
Bereich = ADC.ATTN_11DB

led = Pin(2,Pin.OUT)
sleep(3)
led.on()
rad = ADC(Pin(ksPin))
rad.atten(Bereich) # Messbereich: 3.3V
rad.width(Auflsg) # Aufloesung 512 Bit
ruhe = 449
maximum = 0
n = 0
laufZeit = 60
current = time()
start = current
end = current+laufZeit
while current <= end:
 pegel=rad.read()
 if pegel > maximum: maximum = pegel
 current = time()
 n += 1
led.off()
print ("maximaler Pegel =",maximum)
print ("Messungen:",n)
print ("Messungen {} / ms".format(n/(laufZeit*1000)))

In the loop of maxmum.py the value level is read in continuously, which replaces the
value maximum whenever it exceeds the previous value of maximum. This is done
once for the interference voltage peaks without a sample and a second time for the
measurement of the highest voltage pulses with an inserted sample.

I have already briefly outlined the basic function of the actual measurement program
measure.py above. Now let's take a closer look. The lines I am going to explain are
formatted in bold in the listing.

http://grzesina.de/az/blog_mcp5/maximum.py

Download: messen.py
from machine import Pin, ADC, Timer
from time import sleep, time
from beep import BEEP
from oled import OLED
from touch import TP
import math

stufen = 16 # Anzahl Energiestufen
cntMax = 713 # hoechster LSB-Wert mit Probe
ruhePegel = 449 # Durchschnitt für 60 Sekunden
noise = 500 # hoechster Rauschpegel
schwelle = noise - ruhePegel # Rauschamplitude
korridor = cntMax - noise # nutzbares ADC-Intervall
intervallBreite = korridor /stufen # Breite einer Energiestufe
extended = 0 # Anzahl Bereichsueberschreitungen

LedPin = const(4) # Pin fuer LED-Ausgang HIGH-aktiv
BuzzPin = const(13) # Pin fuer Piezoelement
tweet = BEEP(LedPin,BuzzPin,5)
red = Pin(2,Pin.OUT)

TPin1 = TP(27) # Touchpads zur
TPin2 = TP(14) # Ablaufsteuerung

rad = ADC(Pin(34)) # Detektor-Pin
rad.atten(3) # Messbereich: 3.3V
rad.width(1)

d=OLED()

messDauer=300
activity=0
spektrum=[]
for i in range(stufen):
 spektrum.extend([0])
events = 0
red.on()
d.clearAll()
d.writeAt("DAUER: {}s".format(messDauer),0,2)
jetzt = time()
ende = jetzt + messDauer
print ("Beginn:",jetzt, " Ende:",ende)
aktuell = jetzt

while aktuell <= ende:
 maximum = noise
 pegel = rad.read()
 while pegel <= noise and time()<=ende:
 if time()>ende: break
 pegel = rad.read()

http://grzesina.de/az/blog_mcp5/messen.py

 tweet.beep(5) # Rauschpegel ueberschritten
 if pegel > maximum: maximum = pegel

 while pegel > noise and time()<=ende:
 if time()>ende: break
 pegel = rad.read()
 if pegel > maximum: maximum = pegel
 events += 1
 print(maximum)
 if maximum >= cntMax:
 maximum = cntMax - 1
 extended += 1
 maximum -= noise
 index = int(maximum / intervallBreite)
 spektrum[index] += 1
 aktuell = time()
 # Ende der Messschleife
red.off()
activity= events/(messDauer/60)
d.writeAt("ACTIVITY:{} CPM".format(int(activity)),0,0)
d.writeAt("{} EVENTS IN".format(events),0,1)
print(spektrum)

How does the program work?

In addition to the usual preparatory work, our three values are incorporated and three
more are calculated. Known settings follow.

A few lines below we create an OLED object, define the measurement duration,
delete the value for the activity and create an empty list, which we immediately fill
with zeros; we need an entry for each level. Decay counter to zero, red light on to
start measuring. Delete the display, set up time control, display the time and off you
go.

The first while loop is the measurement time manager, we already know that.

Maximum value on noise level upper limit, read in level and continuously check
whether we are still within the noise range. The loop is left when this is no longer the
case, i.e. the level is in the useful signal corridor or the measurement time has been
exceeded. If we are on time, i.e. a decay has been detected, we trigger a beep with
an LED flash and set the maximum to the new level value. Regardless of the course
of the main program, the beep is stopped after 5 ms by the callback function of the
timer interrupt.

The next while loop waits until the ADC level is again in the noise range, but
compares the level and maximum during this time. If the level value is higher, it
replaces the previous maximum.

After leaving the loop, we increase the event counter and, if necessary, output the
maximum for control. The latter can be omitted in stand-alone operation, since no
terminal is then connected. This also applies to all other print commands.

In rare cases, the maximum value just determined can be above cntMax. However,
since no step memory is provided for this, the value is set to an LSB under cntMax.
This is necessary to avoid indexing errors in the spectrum list afterwards. If, on the
basis of the value in maxCount, an index were calculated that was greater than 15,
the program would exit with an error message because there is no list element in
spectrum for this index. If this step was necessary, the over-range counter is
incremented.

Since decay events with values within the noise range are very likely to take place,
but cannot be detected, no counter memories are provided for this. For this reason,
the noise level is subtracted from the maximum, the index in the spectrum list is
calculated from this value and the corresponding level counter is then increased. The
measurement time is then updated.

After leaving the measurement time loop, we turn off the red light and inform about
the results in the display. You can now experiment with your samples as you wish,
but there are still extensions waiting for you.

Autostart and Stand-Alone

The three individual programs are well suited for initial tests because they clearly
demonstrate the function of our circuit together with the ESP32 and its peripherals.
But that's not enough for stand-alone operation, because in this case we don't have a
terminal available to start the programs. In this case, the program must start by itself,
carry out the desired actions and report the results.

MicroPython has a similar mechanism available for autostart as the Arduino IDE with
its setup and loop procedures. The setup is called boot in MicroPython and is a
separate file with this name, i.e. boot.py. Loop is also replaced by a separate file
called main.py. In contrast to the loop construct of the Arduino IDE, this part of the
program must contain an endless loop in the form while True, otherwise the program
will abort in nirvana after one run.

Warning!

It can be difficult to stop an ESP32 after an autostart without a defined
program end in order to make changes to the program. It is imperative that
you install a time-controlled waiting loop in boot.py after the start, during which
Thonny or µPyCraft can be aborted via USB. To cancel, press Ctrl + C.

If that is not possible from the IDE due to USB connection problems, there is an
emergency brake and a self-destruct button. The emergency brake is the Putty
program. First the connection to the CP2102 is established, baud rate 115200. Then
you start the ESP32 with the reset button and enter Ctrl + C in the putty window. That
should stop the controller. Then first rename the boot.py file, the new file name does
not matter.

os.rename ("boot.py", "bootpy.org")

After restarting the ESP32 you should be able to contact it again in µPyCraft or
Thonny.

If that all goes wrong, the only thing that helps is the self-destruct button called
esptool.py. Clear the memory as described below and reflash MicroPython.

For the autostart, I converted the three previous programs into functions and added
four more functions to the whole thing. All of this has been added to the bootpart.py
file, which is used for initial tests. If everything works fine, copy the entire contents of
this file to the clipboard and add everything to the previous contents of boot.py after
the last line. After saving, the new boot.py is uploaded to the device.

Two of the new programs are used for more convenient LED control, the new jaNein
() queries the touchpads with additional time control and report () outputs the values
of the spectrum list as a bar graph, because there is no longer a terminal for it - but of
course it can still be connected.

You already know the touchpad query with timeout from previous homework. I made
a change in touch.py to the getTouch () method. Instead of the ADC value or
milliseconds, it now returns the values True, False or None, accordingly touched, not
touched or timeout.

yes no () takes the optional parameters message and runtime. The string in message
is output in line 1 on the display, running time represents a timeout value after which
the function is ended if no touch action has taken place. The return value of yesNo ()
is based on this table.

laufZeit Aktion ja Aktion nein Return value

0 - - - (endles waiting)

0 x - 2

0 - x 1

0 x x 3

>0 x - 2

>0 - x 1

>0 x x 3

>0 - - 0 (Timeout)

The return values are also coded in the constants JA = 2, NEIN = 1, BOTH = 3 and
TIMEOUT = None.

The function report () takes one of the constants Fcut, Fprop or Flog as an optional
parameter to adapt the height of the columns to the values in spectrum and to the
height of the display (in d.HEIGHT). The table makes the selection easier.

Parameter max(spektrum) Bemerkung

Fcut > d.HEIGHT alle Werte in spektrum werden, falls > d.HEIGHT auf
diesen Wert gekappt, kleinere Werte werden in ihrer
Originalhöhe dargestellt.

Fcut <= d.HEIGHT alle Werte werden in ihrer Originalhöhe dargestellt.

Fprop > d.HEIGHT alle Werte werden proportional zu max(spektrum)
=d.HEIGHT herunter gerechnet.

Fprop <= d.HEIGHT alle Werte werden proportional zu max(spektrum) =
d.HEIGHT gestreckt.

Flog alle Werte werden als log(spektrum[i]) logarithmisch
dargestellt, wobei log(max(spektrum)) = d.HEIGHT.

After the start, the values for quiet level, noise and cntMax can be recorded again if
the touchpad query is answered with "yes" within 10 seconds. With cntMax there is
no time limit because the sample has to be inserted at rest. You can change that if
you want.

The values are displayed for 3 seconds, then boot.py is terminated and main.py is
started automatically, which calls up the measurement function in an endless loop
controlled via the touchpad and shows the results on the display. The solution to
homework 6 can serve as a suggestion for you to switch continuously between the
display of values and graphics until a touchpad is touched to start a new
measurement. I have not shown the finished bootpart.py and boot.py as well as
mainpart.py and main.py here, because they only represent repetitions and
summaries of already known contents. But you can use the downloads to study the
files.

http://grzesina.de/az/blog_mcp5/bootpart.py
http://grzesina.de/az/blog_mcp5/boot.py
http://grzesina.de/az/blog_mcp5/mainpart.py
http://grzesina.de/az/blog_mcp5/main.py

Can the ESP8266 do all of this?
Yes, it can, with certain adjustments, the scope of which is limited. These changes
compared to the ESP32 concern the touchpads, which are replaced by buttons,
together with the driver file touch8266.py and the initialization of the analog input. A
duo-LED module (red on D6 and green on D7) and the blue LED built into the
ESP8266-12F on pin GPIO2 = D4 are used for the LEDs. This LED is LOW-active,
which is why the corresponding positions in the functions ledOn () and ledOff () as
well as in the beep module must be adapted. Here is a photo of the structure and the
circuit diagram from Fritzing.

The radiation sensor is connected with Vcc to Vin = 5V of the ESP8266, GND to
GND and the signal to A0. Please note that the names of the connections of the
OLED display on your copy may differ from those in the diagram.

The programs for the ESP8266 are linked in the following list. The operation of the
ESP8266 board otherwise follows the descriptions for the ESP32.

beep.py
boot.py
bootpart.py
main.py
mainpart.py
maximum.py
messen.py
oled.py
ruhepegel.py
ssd1306.py
touch8266.py

In the next episode, the last one on the subject of nuclear radiation measurements,
we will use a website to operate the ESP32 / ESP8266, on which the results of the
settings and measurements are clearly displayed. This is ensured by the web server
from the second episode, which we will cannibalically call up for this job. There is
also a short detour in the direction of inheritance in classes.

You can of course also download this part as a PDF in German.

This is followed by the description of how you can use esptool.py to flash the
MicroPython firmware.

http://grzesina.de/az/blog_mcp5/8266/beep.py
http://grzesina.de/az/blog_mcp5/8266/boot.py
http://grzesina.de/az/blog_mcp5/8266/bootpart.py
http://grzesina.de/az/blog_mcp5/8266/main.py
http://grzesina.de/az/blog_mcp5/8266/mainpart.py
http://grzesina.de/az/blog_mcp5/8266/maximum.py
http://grzesina.de/az/blog_mcp5/8266/messen.py
http://grzesina.de/az/blog_mcp5/8266/oled.py
http://grzesina.de/az/blog_mcp5/8266/ruhepegel.py
http://grzesina.de/az/blog_mcp5/8266/ssd1306.py
http://grzesina.de/az/blog_mcp5/8266/touch8266.py
http://grzesina.de/az/blog_mcp5/Micropython_mit_dem_ESP32_und_ESP8266_teil5.pdf

The use of esptool.py with the ESP32 / ESP8266
In the third part of the blog I wrote that Thonny cannot flash the firmware on the ESP.
Thanks to a comment from a reader, I'm a lot smarter now. In fact, there is a very
small hidden link hidden in the Interpreter window, which can be opened via the Run
- select Interpreter… menu: Install or update firmware.

Left-click to land in the settings window.

And left click on Install starts the process. Many thanks to Rudolf R. for the tip.

But because I promised to describe the flash process for esptool.py, with this chapter
I am fulfilling the promise that has already been postponed twice.

When Thonny is installed, the directory X: \ Users \ <username> \ AppData \ Local \
Programs \ Thonny \ Lib \ site-packages is created if the installation was carried out
as a normal user. If Thonny was installed as administrator, it is the directory X: \
Program Files (x86) \ Thonny \ Lib \ site-packages. Please replace the 'X' with your
drive letter. This directory contains, along with other .py files, the esptool.py file,
which can be used to flash firmware on the ESP32.

esptool.py is a Python program that must be started from the command line. The
Python installation brought by Thonny is used for this. Now start the command
prompt and change to the appropriate directory that corresponds to your installation. I
installed Thonny as an administrator and therefore choose the second variant. List
the files, esptool.py should be listed.

C: \ Users \ root> cd C: \ Program Files (x86) \ Thonny \ Lib \ site-packages

C: \ Program Files (x86) \ Thonny \ Lib \ site-packages> dir esptool.py

 Directory of C: \ Program Files (x86) \ Thonny \ Lib \ site-packages

10/23/2019 5:07 AM 143.643 esptool.py
 1 file (s), 143,643 bytes

Now start esptool.py
C: \ Program Files (x86) \ Thonny \ Lib \ site-packages> esptool.py

If the screen output looks something like this, that's good.

If you get error messages, try one of the following calls.

C: \ Program Files (x86) \ Thonny \ Lib \ site-packages> python esptool.py

C: \ Program Files (x86) \ Thonny \ Lib \ site-packages> python3 esptool.py

For more convenient use, a preparation should now be made that has to do with the
type of program call. This affects Windows and, in a similar way, Linux.

One of the following conditions must be met so that a program can be started from
any window in the command prompt.
1. In the input window you are in the directory of esptool.py. Esptool.py is started
without specifying a path. The bin file must be specified with its full path name.
Alternatively, the firmware file can also be copied into the program directory.

2. You are in the directory of the bin file. The file name esptool.py is preceded by the
relative or absolute path to the program directory. The bin file can be specified
without a path.

3. The path to the file to be called up is contained in the Windows (or Linux) PATH
environment variable. We are in the directory of the bin file. Path information is not
required either to start esptool.py or for the file name of the firmware.

I am now introducing the procedure for the third case because the other methods can
result in very long command lines. Connect your ESP32 to the USB bus and
determine the COM port number of the connection. To do this, enter "Device
Manager" in the Windows search at the bottom left.

Klicken Sie rechts auf Geräte-Manager und öffnen Sie dann den Ordner
Anschlüsse (COM & LPT).

Hier ist der CP210x des ESP32 als COM4 eingetragen. Das kann bei Ihnen eine
andere COM-Nummer sein.

In Linux helfen für das ganze Prozedere die folgenden Befehle

lsusb

Bus 002 Device 004: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

dmesg | grep tty

[3977499.045783] usb 2-1: pl2303 converter now attached to ttyUSB0

Die Portangabe lautet damit /dev/ttyUSB0

Um die PATH-Variable in Linux zu erweitern wird in der Datei ~/.bashrc folgender
Eintrag hinzugefügt.

PATH=$PATH:/pfad/zu/esptool.py

export PATH

What is very easy in Linux with two commands and two lines of text requires more
effort in Windows, but it is also worthwhile. The addition of the PATH variables in
Windows is "a bit" more complex. Here as there, the eternally long path specifications
are the problem because they result in even longer command lines.

Initial scenario:
esptool.py: C: \ Program Files (x86) \ Thonny \ Lib \ site-packages
Firmware: F: \ micropython \ ESP32 \ firmware \ latest \ esp32-idf3-20200902-
v1.13.bin
COM port: COM4

You can save yourself the path to the esptool.py program if you include the program
path in the Windows system's Path environment variable. And you save the path to
the firmware directory by changing to this directory via Explorer. Long file names can
be entered quickly using the automatic input completion. So that this can be done,
we now add the string of the program path from esptool.py to the path variable PATH
of the Windows system. It works like this.

Start with a right click on the Windows symbol in the lower left corner of the screen
and click on System.

Im rechten Fenster rollen sie nach unten bis Verwandte Einstellungen. Klicken Sie
auf Systeminfo.

Im folgenden Fenster gehen Sie auf Erweiterte Systemeinstellungen.

Ganz unten finden Sie das Feld Umgebungsvariablen -- Klick.

In the upper part you set the variable Path only for yourself, in the lower part a
change affects all users system-wide. My installation of Thonny was done as an
administrator, so I choose the variant below.

To add entries to the path variable, first click on Edit.

If the path is longer, it is better to use it from the Windows Explorer. In Windows
Explorer, navigate to the program directory of esptool.py and, when you arrive there,
click in the back of the line with the entire path. Use Ctrl + C to copy the marked path
information to the clipboard. Go back to the Edit Environment Variable window.

Klicken Sie auf Neu, um der Path-Variablen den kopierten Pfad hinzuzufügen.

Fügen Sie den Pfad aus der Zwischenablage ein und bestätigen Sie mit OK.

Now close all windows in reverse with OK.

Now, from the firmware directory, you can execute the calls for an ESP32 as follows.
Please note that the identifier must be specified explicitly for this chip, while it is
optional for the ESP8266. The chips also require different start addresses for the
firmware, with the ESP8266 it is 0x0000 and with the ESP32 you have to specify
0x1000.

esptool.py --chip esp32 --port COM4 erase_flash

esptool.py --chip esp32 --port COM4 write_flash -z 0x1000 esp32-idf3-20200902-
v1.13.bin

That looks good and also has the advantage that esptool.py can now be called from
any directory. If you want to flash a Node MCU firmware, switch to the corresponding
firmware directory and start the flash process from there. The program calls then look
exactly like here, except for the name of the firmware file and the chip used. If
necessary, replace esp32 with esp8266. The default value is esp8266 and doesn't
even need to be entered, I mentioned that above. The file name can be specified
more quickly from the directory by entering the first characters of the file name and
using the Tab key.

Here is another trick to call the Powershell in the correct target directory. In Explorer,
navigate to the directory that contains the directory with the .bin files (1). Right-click
on the target directory and select Open PowerShell window here from the context
menu (2). This will land you in the Powershell window in the correct directory on the
command line and you can start entering data immediately.

A few more commands for the ESP8266, which are often used, now follow.

esptool.py flash_id
Brings a whole range of data to the chip, including MAC address and flash size. The
COM port is searched for and connected automatically.

esptool.py erase_flash
Erases the flash memory before it is rewritten. The COM port is searched for and
connected automatically.

esptool.py -p COM5 -b 460800 write_flash -fm dio -fs 4MB 0x00000 esp8266-1m-
20200902-v1.13.bin
Writes an ESP8266 to port COM5 with baud rate 460800 in dio mode with the
content of the file esp8266-1m-20200902-v1.13.bin from address 0x0000. For a D1
mini, the memory size must be specified with the actually available 4MB, even if only
1MB is used by MicroPython.

esptool.py --port COM3 write_flash --flash_mode dio -flash_size 1MB 0x0000
esp8266-1m-20200902-v1.13.bin
Flashing an ESP8266-01 with 1MB Flash. This leaves 374KB for programs.

There were also surprising moments when writing this article. Once there was the
finding that without specifying the flash size and mode, an ESP8266 D1 mini could
be flashed with esptool.py, but then the built-in LED immediately began to flash wildly
and the chip was not addressable. The same behavior was shown by an ESP8266-
01 that I had flashed with µPyCraft. With esptool.py and the right parameters, both
boards worked in the end. What is essential for -fs or -flash_size is the specification
of the actually available flash memory, which in the case of the ESP8266 does not
necessarily have to match the size in the file name of the bin file. The command
esptool.py --port COM3 write_flash --flash_mode dio -flash_size 1MB 0x0000
esp8266-1m-20200902-v1.13.bin
so it fits for the ESP8266-01 and for the ESP8266 D1 mini it has to be called
esptool.py --port COM3 write_flash --flash_mode dio -flash_size 4MB 0x0000
esp8266-1m-20200902-v1.13.bin.

Solutions to the homework from part 4
1. Let us assume that you make the following entries on the command line:
>>> from beep import BEEP
>>> BEEP. Duration = 5000

>>> BEEP. Duration
5000

>>> b = BEEP (2.13)
???
???
>>> b.beep ()
???
How does the ESP react to the last two commands? Can you justify the behavior?

The output of the constructor is:
BEEP constructor
LED: 2, Buzz: 13, duration = 15

The tone sounds for 15 ms.

Let's look at the beginning of the BEEP class definition

DURATION = const (15)

class BEEP:
 duration = DURATION

duration receives a reference to the storage space of the constant 15

 def __init __ (self, led, buzz, duration = duration):

During the import, the interpreter runs over this line of the constructor and builds

the reference to 15 into the interpreted (= translated) program. If duration is
set to a new value in the further course, this does not change anything in the
assignment in the parameter list of the constructor. To do this, the program
would have to be reinterpreted. The interpreter only translates the program
once during the import. Any number of instances can then be created by
executing the already translated constructor method, with the fixed reference
to the value 15.

Because duration is an optional parameter, the reference to the constant 15 can

be overwritten by specifying an argument for duration when an object is
instantiated, as a number or a name-value pair. If no argument is given,
access takes place via the specified reference to the constant 15.

The message from the constructor and the duration of the sound are therefore

consistent.

2. Display the output in the touchtest.py file on the OLED display instead of on the
terminal. When does that make sense, when not?

You can download the sample program. Terminal and display have advantages

and disadvantages. The terminal can also display longer, extensive texts
without any problems, but you need a computer. The display works "stand
alone", but on the one hand can only reproduce short texts and only in a
limited number of lines. While you can scroll back in the terminal, old issues
are overwritten by new ones on the display.

3. Measure the speed that can be achieved with the output on the terminal and on

the OLED display.

The test program essentially corresponds to the speed test for the ADC. You can

also download it.

from time import sleep, time
from oled import OLED
d = OLED ()

n = 0
now = time ()
duration = 5 # program run time approx. 3 seconds
then = now + duration
actual = now
while actual <= then:
 d.writeAt ("01234567890123456", 0.0)
 # d.writeAt ("01234567890123456", 0.1)
 # d.writeAt ("01234567890123456", 0.2)
 #print ("0123")
 n + = 1
 actual = time ()
 # print (ldr_value)
 # sleep (0.1)
print (n / duration, "blocks per second")

OLED constructor
SDA: 21, SCL: 22, Size: 128x32
48.8 blocks per second

A line of 16 characters can be output approx. 50 times per second. This is largely

independent of the number of characters. With 4 characters I measure 50
blocks / s and with only one character 52 blocks / s. Three lines with 16
characters bring it accordingly to 16.6 blocks / s.

For the terminal output, replace the line in the program
 d.writeAt ("0123456789012345", 0.0)
by
 print ("0123456789012345")

http://grzesina.de/az/blog_mcp5/hal4/touchtest_hal4-2.py
http://grzesina.de/az/blog_mcp5/hal4/oled_benchmark.py

With 1 line of 16 characters, the terminal is a good 12 times faster with 628.4
blocks / s, with 4 characters even over 40 times.

This is due to the fact that the entire ESP frame buffer always has to be sent to

the display, even if only one character has been changed. What slows down is
the show () method.

In contrast to this, the serial line to the terminal only transmits as many characters

as need to be sent. The fact that the ESP32 or ESP8266 works significantly
faster than the serial line is expressed in the fact that you have to wait longer
for the result than the 5-second specification of the program. The message
only comes when the send buffer has been completely transferred.

4. Does it make a difference to the speed how many characters are output on the

display and on the terminal per pass?

No for the display, yes for the terminal.

5. Use the pillar () command and the random number generator from the

homework solution to create a bar chart made up of 10 bars that uses the full
display area of a display. Remember that there are displays of different widths.

The width specification should be kept variable and not, for example, given as 64.

The information here comes from the instance attribute width of the object d.

import os
from oled import OLED
d = OLED ()

d.clearAll ()

width = d.width // 10
hTeiler = 256 // d.height

d.xAxis ()
d.yAxis ()
for i in range (10):
 height = os.urandom (1) [0] // h divider
 d.pillar (i * width, width-1, height)

6. Prepare two different outputs for the OLED display, for example a text screen

and a bar chart. Have both displayed alternately for 3 seconds, while (at the
same time!) The numbers from 1 to 30 are output continuously in the terminal
according to the following scheme.

1
12th
123
1234
12345
...

The example is intended to demonstrate that interrupt-controlled actions
(relatively) intimate are possible during the normal execution of a main
program. Ultimately, the exact timing depends on how the firmware classifies
and handles the priority of the interrupts.

The program linked here gives an example of the solution to the task.

The solution is via a timer that calls one of the two functions texte () or pillars ()

every 3 seconds. The change takes place via the counting up and the bitwise
undating of the variable n.

The numbers are output via two for loops, the outer one running to 31 and the

inner one therefore running to 30. A short sleep break is built in so that the
serial interface can keep up.

7. Modify the reaction tester from the homework solution in such a way that a

different LED is sharp with each round. Of course you have to tell the player
via the OLED which color it is.

A few lines have been added to the hausi4b.py program. The modified program is

also available for download.
Right at the beginning, the OLED class is imported, the display object d is created

and the display is deleted.
A list of colors is defined to match the list of LED objects. The fixed assignment of

a number to testLed is removed.
ledList = [ledG, ledR, ledB]
ledColList = ["green", "red", "blue"]

The target LED is rolled as usual and then the color is shown on the display.
 d.writeAt (ledColList [led], 0,1)

Finally, we roll a test LED and assign the corresponding object to the run attribute

ledx. The rest of the homework solution doesn't need to be changed.
 testLed = os.urandom (1) [0] & 0x03
 testLed = (testLed if testLed! = 3 else 2)
 Assign #TestLED, continue as usual
 ledx = ledList [testLed]

Start the program and go!

8. Can you set it up so that the ESP32 and ESP8266 variants are kept in a new

touch module and, depending on the controller type, the correct one is
automatically used during import?

The touch.py file contains the solution, which is very simple. Both original parts

were packaged in an if-elif-else structure, each indented one level further. The
import of Pin and TouchPad has also been moved to the if structure. The limit
value for the ESP8266 variant was set to 0.5 so that comparisons can be
made as with the 32 variant.

http://grzesina.de/az/blog_mcp5/hal4/timereinsatz.py
http://grzesina.de/az/blog_mcp4/hausi4b.py
http://grzesina.de/az/blog_mcp5/hal4/alternative_farbe.py
http://grzesina.de/az/blog_mcp5/hal4/touch.py

